Power Management Integrated Circuits
Vortragende/r (Mitwirkende/r) | |
---|---|
Nummer | 0000003028 |
Art | Vorlesung mit integrierten Übungen |
Umfang | 4 SWS |
Semester | Wintersemester 2025/26 |
Unterrichtssprache | Englisch |
Stellung in Studienplänen | Siehe TUMonline |
Termine | Siehe TUMonline |
- 15.10.2025 13:15-14:45 2770, Hörsaal , Vorlesung
- 16.10.2025 11:30-13:00 1400, Hörsaal o. Exp.-Bühne , Übung
- 22.10.2025 13:15-14:45 2770, Hörsaal , Vorlesung
- 23.10.2025 11:30-13:00 1400, Hörsaal o. Exp.-Bühne , Übung
- 29.10.2025 13:15-14:45 2770, Hörsaal , Vorlesung
- 30.10.2025 11:30-13:00 1400, Hörsaal o. Exp.-Bühne , Übung
- 05.11.2025 13:15-14:45 2770, Hörsaal , Vorlesung
- 06.11.2025 11:30-13:00 1400, Hörsaal o. Exp.-Bühne , Übung
- 12.11.2025 13:15-14:45 2770, Hörsaal , Vorlesung
- 13.11.2025 11:30-13:00 1400, Hörsaal o. Exp.-Bühne , Übung
- 19.11.2025 13:15-14:45 2770, Hörsaal , Vorlesung
- 20.11.2025 11:30-13:00 1400, Hörsaal o. Exp.-Bühne , Übung
- 26.11.2025 13:15-14:45 2770, Hörsaal , Vorlesung
- 27.11.2025 11:30-13:00 1400, Hörsaal o. Exp.-Bühne , Übung
- 03.12.2025 13:15-14:45 2770, Hörsaal , Vorlesung
- 10.12.2025 13:15-14:45 2770, Hörsaal , Vorlesung
- 11.12.2025 11:30-13:00 1400, Hörsaal o. Exp.-Bühne , Übung
- 17.12.2025 13:15-14:45 2770, Hörsaal , Vorlesung
- 18.12.2025 11:30-13:00 1400, Hörsaal o. Exp.-Bühne , Übung
- 07.01.2026 13:15-14:45 2770, Hörsaal , Vorlesung
- 08.01.2026 11:30-13:00 1400, Hörsaal o. Exp.-Bühne , Übung
- 14.01.2026 13:15-14:45 2770, Hörsaal , Vorlesung
- 15.01.2026 11:30-13:00 1400, Hörsaal o. Exp.-Bühne , Übung
- 21.01.2026 13:15-14:45 2770, Hörsaal , Vorlesung
- 22.01.2026 11:30-13:00 1400, Hörsaal o. Exp.-Bühne , Übung
- 28.01.2026 13:15-14:45 2770, Hörsaal , Vorlesung
- 29.01.2026 11:30-13:00 1400, Hörsaal o. Exp.-Bühne , Übung
- 04.02.2026 13:15-14:45 2770, Hörsaal , Prüfung
Teilnahmekriterien
Lernziele
Upon successful completion of the module, students will be able to:
Understand fundamental PMIC concepts and architectures:
Grasp the operating principles and block‐level structures of power‐management ICs, including low‐dropout regulators(LDOs), switching converters, charge pumps, power sequencing and protection circuits.
Connect theoretical models to real‐world behavior:
Develop insight into how small‐signal and large‐signal models predict regulator dynamics, stability margins andtransient response, and relate these models to measured circuit performance.
Describe the interplay between specifications, sizing and topology:
Explain how key requirements—output accuracy, load/regulation transients, efficiency and noise—drive choices intransistor sizing, passive component selection (inductors, capacitors) and overall PMIC topology.
Understand fundamental PMIC concepts and architectures:
Grasp the operating principles and block‐level structures of power‐management ICs, including low‐dropout regulators(LDOs), switching converters, charge pumps, power sequencing and protection circuits.
Connect theoretical models to real‐world behavior:
Develop insight into how small‐signal and large‐signal models predict regulator dynamics, stability margins andtransient response, and relate these models to measured circuit performance.
Describe the interplay between specifications, sizing and topology:
Explain how key requirements—output accuracy, load/regulation transients, efficiency and noise—drive choices intransistor sizing, passive component selection (inductors, capacitors) and overall PMIC topology.
Beschreibung
Introduction & Use Cases
– The role of PMICs in electrical systems: placed between the energy source and the electronics
– Key requirements: size, efficiency, reliability, noise performance, cost
– Fundamental topologies:
• Linear regulator (resistive approach)
• Inductor-based DC/DC converter (switch + inductor)
• Switched-capacitor converter (switch + capacitor)
• Hybrid converters (switch + capacitor + inductor)
– Power-management system architectures: multiple rails (e.g., Li-ion battery → DC/DC → analog LDO + digital LDO)
Power Devices & Components
– Power-stage configurations: low-side switch, high-side switch, half-bridge, full-bridge
– Non-ideal effects: RDSon, dropout, parasitic capacitances, body diode
– Loss mechanisms: conduction losses, switching losses
– Passive components: MOS, MOM, MIM capacitors; planar inductors
– Power transistors: DEMOS, DMOS; SOI technologies; latch-up; safe-operating area (SOA); dead-time generation
Linear Regulators – Basics
– Principle: voltage-controlled resistance
– Architecture: power transistor, sense resistor, reference voltage, error amplifier
– Dropout voltage (~100 mV)
– DC metrics: power efficiency, current efficiency, line regulation, load regulation
– Error amplifier specs: gain, slew rate, PSR
– Transient response: step changes in input voltage and load current
Linear Regulators – Advanced Topics
– Voltage-mode vs. current-mode control
– PMOS vs. NMOS power devices
– Stability analysis: poles/zeros, Miller compensation, zero-canceling resistor
– Slew-rate enhancement & dynamic biasing
– Noise & power-supply rejection considerations
– Over-charge protection, capacitor-less LDO designs
Protection & Reference Circuits
– Overvoltage, undervoltage, and overtemperature protection
– Bandgap voltage & current references
– Start-up circuits and power-on-reset
– Short-circuit and over-current protection
Switching Regulators – Fundamentals
– Comparison of switching vs. linear regulation
– Converter topologies: LC vs. capacitive-only
– Synchronous vs. non-synchronous DC/DC
– Voltage-mode vs. current-mode, Buck vs. Boost, PFM vs. PWM, CCM vs. DCM
– Inductive vs. inductorless operation
– Stability considerations
LC Buck Converter
– Inductor sizing & current ripple
– Schematic & operating principle
– Line & load regulation
– Efficiency, stability, noise & PSRR analysis
– Compensator design (Type I/II/III)
LC Boost Converter
– Inductor sizing & current ripple
– Schematic & operating principle
– Line & load regulation
– Efficiency, stability, noise & PSRR analysis
– Comparison to Buck topology
Capacitive Buck Converters (SCVR)
– Series-parallel topologies (Dickson, ladder, Fibonacci)
– Equivalent output resistance
– Flying-capacitor and switch sizing
– Efficiency and regulation methods
Capacitive Boost Converters (Charge Pumps)
– Diode-based vs. transistor-based charge pumps
– Stage cascading & closed-loop control
Near-Field Wireless Power Transfer
– Principles: electromagnetic vs. electrostatic induction
– Basic architectures & operating frequencies
– Near-field vs. far-field applications
Far-Field Wireless Power Transfer & RF Energy Harvesting
– RF energy harvesting for low-power IoT: impedance matching, rectification, MPPT
– RF path loss and power budgeting
– Full chain: RFEH → Boost → MPPT → Buck → LDO
– Far-field application examples
– The role of PMICs in electrical systems: placed between the energy source and the electronics
– Key requirements: size, efficiency, reliability, noise performance, cost
– Fundamental topologies:
• Linear regulator (resistive approach)
• Inductor-based DC/DC converter (switch + inductor)
• Switched-capacitor converter (switch + capacitor)
• Hybrid converters (switch + capacitor + inductor)
– Power-management system architectures: multiple rails (e.g., Li-ion battery → DC/DC → analog LDO + digital LDO)
Power Devices & Components
– Power-stage configurations: low-side switch, high-side switch, half-bridge, full-bridge
– Non-ideal effects: RDSon, dropout, parasitic capacitances, body diode
– Loss mechanisms: conduction losses, switching losses
– Passive components: MOS, MOM, MIM capacitors; planar inductors
– Power transistors: DEMOS, DMOS; SOI technologies; latch-up; safe-operating area (SOA); dead-time generation
Linear Regulators – Basics
– Principle: voltage-controlled resistance
– Architecture: power transistor, sense resistor, reference voltage, error amplifier
– Dropout voltage (~100 mV)
– DC metrics: power efficiency, current efficiency, line regulation, load regulation
– Error amplifier specs: gain, slew rate, PSR
– Transient response: step changes in input voltage and load current
Linear Regulators – Advanced Topics
– Voltage-mode vs. current-mode control
– PMOS vs. NMOS power devices
– Stability analysis: poles/zeros, Miller compensation, zero-canceling resistor
– Slew-rate enhancement & dynamic biasing
– Noise & power-supply rejection considerations
– Over-charge protection, capacitor-less LDO designs
Protection & Reference Circuits
– Overvoltage, undervoltage, and overtemperature protection
– Bandgap voltage & current references
– Start-up circuits and power-on-reset
– Short-circuit and over-current protection
Switching Regulators – Fundamentals
– Comparison of switching vs. linear regulation
– Converter topologies: LC vs. capacitive-only
– Synchronous vs. non-synchronous DC/DC
– Voltage-mode vs. current-mode, Buck vs. Boost, PFM vs. PWM, CCM vs. DCM
– Inductive vs. inductorless operation
– Stability considerations
LC Buck Converter
– Inductor sizing & current ripple
– Schematic & operating principle
– Line & load regulation
– Efficiency, stability, noise & PSRR analysis
– Compensator design (Type I/II/III)
LC Boost Converter
– Inductor sizing & current ripple
– Schematic & operating principle
– Line & load regulation
– Efficiency, stability, noise & PSRR analysis
– Comparison to Buck topology
Capacitive Buck Converters (SCVR)
– Series-parallel topologies (Dickson, ladder, Fibonacci)
– Equivalent output resistance
– Flying-capacitor and switch sizing
– Efficiency and regulation methods
Capacitive Boost Converters (Charge Pumps)
– Diode-based vs. transistor-based charge pumps
– Stage cascading & closed-loop control
Near-Field Wireless Power Transfer
– Principles: electromagnetic vs. electrostatic induction
– Basic architectures & operating frequencies
– Near-field vs. far-field applications
Far-Field Wireless Power Transfer & RF Energy Harvesting
– RF energy harvesting for low-power IoT: impedance matching, rectification, MPPT
– RF path loss and power budgeting
– Full chain: RFEH → Boost → MPPT → Buck → LDO
– Far-field application examples
Inhaltliche Voraussetzungen
Electronic circuits.
Analog and mixed-signal electronics.
Analog and mixed-signal electronics.
Lehr- und Lernmethoden
Throughout the semester, core power-management IC principles and theoretical frameworks are introduced in weeklylectures. Each week, students will receive self-study exercises—drawn from the lecture materials and selectedreference papers—to deepen their understanding. These exercises are then reviewed and discussed in dedicatedproblem-solving sessions with Q&A. In addition, students are expected to engage in independent study of theprovided lecture notes, tutorials and research articles to fully master the course content.
Studien-, Prüfungsleistung
The exam will consist of a mix of short‐answer questions and design problems that test both theoretical insight andpractical circuit‐design skills in the context of power-management ICs.
Short questions (definitions, conceptual explanations, etc.)
Schematic analysis (critical evaluation of given PMIC topologies, etc.)
Design tasks (sizing of components, stability considerations, efficiency calculations, etc.)
Short questions (definitions, conceptual explanations, etc.)
Schematic analysis (critical evaluation of given PMIC topologies, etc.)
Design tasks (sizing of components, stability considerations, efficiency calculations, etc.)
Empfohlene Literatur
Wicht, Bernhard. Design of Power Management Integrated Circuits. John Wiley & Sons, 2024.
Hu, John, and Mohammed Ismail. CMOS high efficiency on-chip power management. Springer Science & BusinessMedia, 2011.
Hu, John, and Mohammed Ismail. CMOS high efficiency on-chip power management. Springer Science & BusinessMedia, 2011.