Bernd Hofmann


Picture of Bernd Hofmann

Technical University of Munich

Chair of High-Frequency Engineering (Prof. Eibert)

Curriculum Vitae

Bernd Hofmann was born 1991 in Germany. In 2010 he completed an apprenticeship as electronics technician for equipment and systems at the Andrew Wireless Systems GmbH, a Commscope company. He received the Bachelor of Engineering (B.Eng.) degree in electrical engineering (focus on information and communication technology) from the University of Applied Sciences Augsburg, in 2015 and the Master of Science (M.Sc.) degree in electrical engineering and information technology from the Technical University of Munich, in 2017. Since January 2018, he has been a Research Assistant and is working towards his PhD degree under the supervision of Professor Eibert at the Chair of High-Frequency Engineering, Technical University of Munich.

In 2017 Bernd Hofmann was laureate of the »IEEE AP-S Eugene F. Knott Memorial Pre-Doctoral Research Grant« and in 2021 of the »IEEE AP-S Doctoral Research Grant«, both awarded by the IEEE Antennas and Propagation Society.

Research

  • Near-Field Far-Field Transformation
  • Computational Electromagnetics

Education

Theses

Publications

2023

[1] B. Hofmann, T. F. Eibert, F. P. Andriulli and S. B. Adrian:(doi)
Investigations on the Low-Frequency Stability of Inverse Surface Source Field Transformations Based on the Electric Field Integral Operator
17th European Conference on Antennas and Propagation (EuCAP), Florence, Italy, March 2023.
[2] B. Hofmann, T. F. Eibert, F. P. Andriulli and S. B. Adrian:(doi)
An Excitiation-Aware and Self-Adaptive Frequency Normalization for Low-Frequency Stabilized Electric Field Integral Equation Formulations
IEEE Transactions on Antennas and Propagation, Vol. 71, No. 5, pages 4301 - 4313, May 2023.
[3] B. Hofmann, T. F. Eibert, F. P. Andriulli and S. B. Adrian:(doi)
Towards a Self-Adaptive Frequency Normalization Scheme for the Low-Frequency Stabilized Magnetic Field Integral Equation
IEEE Antennas and Propagation International Symposium, Newport, OR, USA, July 2023.
[4] B. Hofmann, P. Respondek and S. B. Adrian:(doi)
Spherical Scattering: A Julia Package for Electromagnetic Scattering from Spherical Objects
Journal of Open Source Software, Vol. 8, No. 91, pages 1 - 4, November 2023.
[5] B. Hofmann, T. F. Eibert, F. P. Andriulli and S. B. Adrian:(doi)
A Low-Frequency Stable, Excitation Agnostic Discretization of the Right-Hand Side for the Electric Field Intrgal Equation on Multiply-Connected Geometries
IEEE Transactions on Antennas and Propagation, Vol. 71, No. 12, pages 9277 - 9288, December 2023.

2022

[1] B. Hofmann, T. F. Eibert, F. P. Andriulli and S. B. Adrian:
Efficient Combination of Scalar-Potential Representations of Solenoidal Functions and Quasi-Helmholtz Projectors
16th European Conference on Antennas and Propagation (EUCAP), Madrid, Spain, March 2022.
[2] B. Hofmann, T. F. Eibert, F. P. Andriulli and S. B. Adrian:
Towards a Low-Frequency Stabilized Electric Field Integral Equation on Simply-Connected Geometries for Arbitrary Excitations
3rd URSI Atlantic / Asia-Pacific Radio Science Meeting (AT-AP-RASC), Gran Canaria, Spain, May 2022.
[3] B. Hofmann, T. F. Eibert, F. P. Andriulli and S. B. Adrian:
Low-Frequency-Stabilized Electric Field Integral Equation on Topologically Non-Trivial Geometries for Arbitrary Excitations
IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Denver, Colorado, July 2022.
[4] B. Hofmann, F. P. Andriulli and S. B. Adrian:
Niederfrequente Stabilisierung der elektrischen Feldintegralgleichung für (fast) beliebige Anregungen
URSI Kommission B Workshop Felder und Wellen, Raitenhaslach, July 2022.
[5] M. M. Saurer, B. Hofmann and T. F. Eibert:(doi)
A Fully Polarimetric Multilevel Fast Spectral Domain Algorithm for 3-D Imaging With Irregular Sample Locations
IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 9, pages 4231 - 4242, September 2022.
[6] B. Hofmann, T. F. Eibert, F. Andriulli and S. B. Adrian:
Über die Stabilisierung von Feldtransformationen im niederfrequenten Bereich basierend auf dem elektrischen Feldintegralgleichungsoperator
Kleinheubacher Tagung, Miltenberg, Germany, September 2022.

2021

[1] B. Hofmann, T. F. Eibert, F. P. Andriulli and S. B. Adrian:
Towards Accurate Discretization of Arbitrary Right-Hand Side Excitations on Multiply-Connected Geometries
International Conference on Electromagnetics in Advanced Applications, Honolulu, Hawaii, USA, August 2021.
[2] B. Hofmann, T. F. Eibert, F. P. Andriulli and S. B. Adrian:
Low-Frequency Stable Discretization of the Electric Field Integral Equation Based on Poincar'e's Lemma
IEEE International Symposium on Antennas and Propagation, Singapore, December 2021.

2020

[1] B. Hofmann, O. Kraus and T. F. Eibert:
Robustness of Sparse Reconstruction Methods in Spherical Antenna Near-Field Measurements
IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Montreal, Canada, July 2020.

2019

[1] B. Hofmann, O. Neitz and T. F. Eibert:
Applying Compressed Sensing with Predictable Accuracy to Spherical Antenna Near-Field Measurements
Progress in Electromagnetics Research Symposium (PIERS), Rome, Italy, May 2019.
[2] O. Neitz, B. Hofmann and T. F. Eibert:
Plane-wave Field Synthesis for Monostatic RCS Prediction from Multistatic Near-Field Samples on Irregular Grids
Photonics & Electromagnetics Research Symposium, Rome, Italy, June 2019.
[3] B. Hofmann and T. F. Eibert: (doi)
Sparse Recovery with Predictable Accuracy in Noisy Spherical Antenna Near-Field Measurements
IEEE International Symposium on Antennas and Propagation and USNC URSI Radio Science Meeting, Atlanta, GA, USA, pages 1857 - 1858, July 2019.
[4] B. Hofmann and T. F. Eibert:
Sparse Recovery with Predictable Accuracy in Noisy Spherical Antenna Near-Field Measurements
Forum for Electromagnetic Research Methods and Application Technologies, Vol. 34, No. 2, August 2019.
[5] B. Hofmann, O. Neitz and T. F. Eibert: (doi)
On the Minimum Number of Samples for Sparse Recovery in Spherical Antenna Near-Field Measurements
IEEE Transactions on Antennas and Propagation, Vol. 67, No. 12, pages 7597 - 7610, December 2019.

2018

[1] B. Hofmann and S. Kolb: (doi)
A Multistandard Method of Network Analyzer Self-Calibration - Generalization of Multiline TRL
IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 1, pages 245 - 254, January 2018.
[2] B. Hofmann, O. Neitz, R. A. M. Mauermayer and T. F. Eibert:
Sparse Recovery in Spherical Antenna Near-Field Measurements
Kleinheubacher Tagung, September 2018.

[1]Digital Object Identifier