
Monitoring the water status of trees by electrical pulse resistance 
measurements.  

Summary 
 

Trees are increasingly suffering from drought stress. In order to maintain tree function in urban 
environments or performance in horticultural production, it is important to understand and respond 
to tree responses to drought stress. This is only possible if, on the one hand, basic knowledge of tree 
water balance is available and, on the other hand, robust measurements are available for decision 
making. In addition to the basics of the water balance, this white paper therefore presents various 
measurement methods that are suitable for such tasks. Treesense pulse sensors, which work with 
measurements of electrical resistance, are used as an example to show the possible applications for 
monitoring systems based on tree physiology. 

1 Introduction 
 

Water is often the most important limiting factor for tree growth (Allen et al. 2015). Climate change, 
bringing higher temperatures and altered precipitation distribution, will increasingly lead to periods of 
drought stress in the future (IPCC 2014). This may result in disturbances in tree physiology, including 
death (Clark and Kjelgren 1990; Kreuzwieser and Gessler 2010; Sevanto et al. 2014). In particular, 
services that are important in urban environments, such as cooling, air quality improvement, and 
aesthetic quality, are greatly diminished, and there is a tremendous loss of ecological and economic 
value (Bowler et al. 2010; Escobedo et al. 2011; Soares et al. 2011; Roeland et al. 2019). Restricted 
growth performance in nurseries or losses in fruit quality and fruit quantity in orchards can also be 
expected in the horticultural sector (García-Tejero et al. 2010; Vera et al. 2013). This also applies to 
excessive water applications, which additionally lead to a massive waste of resources (Chappell et al. 
2013). 

To avoid or minimize such effects, trees can be monitored using physiological measurements (Jones 
2004). Suitable monitoring systems must be able to provide a reliable and up-to-date picture of the 
water status of the trees, be scalable to large stands, require little maintenance, and be cost-effective. 
With such systems, it is possible to detect drought stress at an early stage and to use available 
resources such as water, personnel, and vehicles in a targeted and efficient manner. 

In the following, we will describe how the water balance of trees works, what options are available to 
monitor the water status of trees, and how such monitoring systems can be used, using pulse 
resistance measurements as an example. 

  



2 Water balance of trees 
2.1 Water transport and water storage in trees  
 

Within a tree, water is used as a means of transport, to maintain turgor, and to cool leaves (Hirons and 
Thomas 2018). However, while trees are photosynthesizing, they are necessarily losing water by 
opening stomata (Jensen et al. 2016). Therefore, constant water uptake and subsequent water 
transport is necessary. 

In the root, water is taken up into the conducting xylem (Steudle 2000). There it is further transported 
according to the hydrodynamic laws of e.g. Hagen-Poiseuille (Tyree and Zimmermann 2002). In 
coniferous tracheids with a diameter of 5 - 80 µm, flow velocities of 1 - 2 m per hour are achieved. In 
contrast, hardwood tracheids are 15 - 500 µm in diameter and allow water transport of 6 - 40 m per 
hour (Choat et al. 2008). Annular-pored tree species conduct water only in the outer growth rings, 
while dispersed-pored tree species have wider conducting sapwood (Phillips et al. 1996). 

At least 95% of the absorbed water is released back into the atmosphere via transpiration (McElrone 
et al. 2013). Diffusion resistance depends on the degree of stomatal opening, the thickness of the 
water-saturated boundary layer above the stomata, and the VPD (vapor pressure deficit) (Hirons and 
Thomas 2018). Transpiration is controlled by the stomata. An isohydric behavior is when there is an 
adjusted transpiration rate through gradual closure of the stomata in the correlation of soil moisture 
and VPD. Anisohydric behavior occurs when there are sustained high transpiration rates independent 
of soil moisture and transpiration only follows VPD (Klein 2014). Transpiration can be several hundred 
liters per tree per day (Wullschleger 2000; Martin et al. 2001). 

Within the tree, water is stored in the wood and bark primarily of the coarse roots, trunk, and branch 
axes. The amount stored is approximately 10-22% of the daily water consumption (Köcher et al. 2013). 
The stored water is used for transpiration and as a buffer during drought stress (Schepper et al. 2012; 
Köcher et al. 2013).  

The water potential gradient from the soil to the atmosphere serves as the driving force for water 
transport. The resulting "suction force" is called transpiration suction. The water is held together by 
cohesive and adhesive forces, forming a continuous water column (Tyree 1997). The water is absorbed 
at the roots in a compensatory manner (Jarvis 2011). 

2.2 Diurnal cycle of the water balance 
 

Before dawn, the water balance of a tree is in the maximum saturated state under the given conditions, 
because at night the stomata are closed, no transpiration takes place, and at the same time water can 
be absorbed from the soil (Jensen et al. 2016). Sap flow is very low (Forster 2014) and water content 
in sapwood peaks (Kumagai et al. 2009). This water is distributed throughout the tree and, in some 
cases, to other areas of the soil (Hafner et al. 2017). With the onset of radiation from the rising sun, 
the tree begins to photosynthesize and loses water through the open stomata (Jensen et al. 2016). This 
water initially comes from stored water supplies to ensure a continuous water supply at the times of 
highest photosynthetic rates in the morning (Köcher et al. 2013). In parallel, sap flow begins at the 
base of the trunk to meet water demands. If reservoirs are exhausted by midday, water is provided 
only from long-distance transport. The risk of cavitation increases and the stomata close. Towards 
afternoon, therefore, photosynthesis and transpiration rates decrease (Willert et al. 1995). Water 
stores are then replenished, especially in the evening and at night (Scholz et al. 2011). 



2.3 Annual cycle of the water balance 
 

The water balance of temperate trees is strongly linked to the seasons and associated tree phenology 
(Waring and Running 1978; Kravka et al. 1999; Wullschleger et al. 1996). Both sap flow and stem 
moisture vary greatly from year to year depending on weather patterns (Bovard et al. 2005; 
Wullschleger et al. 1996). The weather-dependent dependence of water balance is also species-
dependent (Bovard et al. 2005). In deciduous trees, sap flow begins with budbreak and reaches its 
maximum in early summer to summer (Cermak and Nadezhdina 1998). Thereafter, sap flow decreases 
due to lower transpiration rates toward the end of the growing season until foliage shedding in autumn 
(Tognetti et al. 2004; Gebauer et al. 2012; Nalevanková et al. 2020). Stem water content behaves 
similarly. It is high in spring and early summer (Hernández-Santana et al. 2008) and declines as water 
availability decreases later in the summer (Hernández-Santana et al. 2008; Hao et al. 2013; Matheny 
et al. 2015; Beedlow et al. 2017). In winter, frost-induced cavitations may occur, further decreasing 
water content. In the spring, these cavitations may partially re-flood and the water content increases 
again (Hao et al. 2013; Hacke and Sauter 1996). 

2.4 Effects of drought stress 
 

Trees can die from drought stress due to hydraulic failure or lack of photosynthetic products (Sevanto 
et al. 2014). Extreme drought causes loss of sapwood conductivity due to air infiltration (cavitation) 
(Choat et al. 2018; Adams et al. 2017). Trees generally do not survive an 88- to 90-percent loss of 
conductivity (Barigah et al. 2013; Urli et al. 2013). For hardwoods, a 50% loss of hydraulic conductivity 
is thought to cause severe damage (Barigah et al. 2013), but some of this damage is still reversible 
depending on tree species, vigor, and location (Ogasa et al. 2013). Prolonged but less extreme droughts 
can lead to carbohydrate deficiency as stomata fail to open to protect against damage to the 
conducting xylem, preventing photosynthesis from occurring (Mitchell et al. 2013). The two processes 
often influence each other. In addition, stressed trees are more susceptible to pests or other abiotic 
factors (Anderegg et al. 2015). 

  



 

3 Measuring parameters of the water balance 
3.1 Soil Water Potential and Soil Moisture  
 

Measurements in soil are divided into volumetric moisture measurements and water potential 
measurements (Campbell 1988; Carter and Gregorich 2008). Capacitive sensors or time domain 
reflectometry (TDR) sensors measure volumetric or gravimetric soil moisture (Lekshmi et al. 2014). 
However, because plant-available water varies greatly by soil type at the same soil moisture content, 
soil moisture has little value without more information about the soil (Hirons and Thomas 2018). 
Tensiometers, on the other hand, measure soil water potential and therefore allow us to say whether 
or not the water present in the soil is plant-available. Plant-available water is only present in the soil 
in the field capacity range up to the permanent wilting point. The permanent wilting point marks the 
soil water potential at which irreversible loss of turgor occurs (Kirkham 2004). In trees, this point ranges 
from -2.0 to -4.0 Mpa (Hirons and Thomas 2018). However, the measurement technique is costly and 
requires high maintenance. 

3.2 Stem moisture 
 

Drought leads to empty water reservoirs in the wood and bark (Betsch et al. 2011), as the trees 
evaporate water but no water can be absorbed due to insufficient soil moisture. This can also lead to 
cavitation, i.e., air infiltration in the xylem and consequent hydraulic failure of the affected areas 
(Nardini et al. 2013). Overall, this reduces the water content in the xylem. It can therefore be used as 
a measure of the hydraulic status of a tree (Gao et al. 2020; Matheny et al. 2017). Like the following 
methods, stem moisture is measured directly on the tree and therefore integrates all environmental 
influences. Depending on the weather pattern, for example, there may be a different curve shape 
compared to soil moisture (Hernández-Santana et al. 2008). In other cases, the curves run parallel 
(Matheny et al. 2015).  

There are several measurement techniques for how stem moisture measurements can be made. 
Popular techniques include capacitive measurement (Matheny et al. 2017; Riccardo Valentini et al. 
2019), time domain reflectometry (TDR) probe measurement (Wullschleger et al. 1996; Nadler et al. 
2006), and electrical resistance measurement (Borchert 1994). These techniques are minimally 
invasive, have low power consumption, and can be integrated into IoT networks (Matasov et al. 2020). 
Electrotomographs can also be used to obtain information about the areal moisture distribution in the 
stem cross-section (Ganthaler et al. 2019; Bär et al. 2019). 

3.3 Radius measurements 
 

Point dendrometers can be used to determine the fluctuations in the radius of a tree. On the one hand, 
these fluctuations are reversible and are caused by the filling and emptying of the phloem and xylem 
cells during the course of the day (Zweifel et al. 2001; Sevanto et al. 2002; Steppe et al. 2006; Zweifel 
et al. 2014; Pfautsch et al. 2015; Swaef et al. 2015). The diurnal pattern follows a sinusoidal curve with 
a maximum in the early morning and a minimum in the afternoon. During dry periods, the xylem is not 
completely refilled and the stem shrinks (Zweifel et al. 2001). Radius measurements are directly related 
to water potential in the crown (Dietrich et al. 2018). Dendrometers are sensitive and expensive, but 
their low power consumption and relatively low maintenance make them suitable for use within IoT 



networks. They are sometimes used for irrigation control in nurseries, orchards, and vineyards (Ortuño 
et al. 2009; Kišš et al. 2019). 

3.4 Sap flow 
 

Sap flow measurements are commonly used in the scientific field to describe the water balance of 
trees (Eller et al. 2018; Mencuccini et al. 2019). If stomata are closed during a dry period to limit 
transpiration (Mencuccini et al. 2019), sap flow is also reduced (Brinkmann et al. 2016; Sitková et al. 
2014; Hölscher et al. 2005; Zapater et al. 2013). It has also been shown that during a drought, sap flow 
on dying trees was reduced several months in advance compared to surviving trees (Preisler et al. 
2020). 

To make sap flow measurements, at least two holes are drilled into the sapwood with a vertical spacing 
of, say, 10 cm. A temperature sensor is inserted into the lower hole and a temperature sensor with 
heater is inserted into the upper hole. The heater is operated continuously or at intervals, depending 
on the system. The temperature difference between the two sensors is used to determine how quickly 
the generated heat is dissipated. The smaller the difference between the sensing elements, the more 
sap flow takes place (Granier 1985). There are very many variations of this technique (Burgess et al. 
2001; Trcala and Čermák 2012; Vandegehuchte and Steppe 2012; Rabbel et al. 2016). What they all 
have in common, however, is the high power consumption that results from heating and the high 
maintenance requirements. 

3.5 Leaf water potential 
 

The leaf water potential is measured using a Scholander bomb (Scholander et al. 1965) and is a very 
precise way of recording the current water status. A leaf is separated and clamped in a pressure 
chamber. The pressure at which a water drop appears at the interface is measured. The amount of the 
chamber pressure corresponds to the amount of the water potential. The measurement is usually 
made before dawn because at this time the regeneration of water stores in the trunk is complete and 
the tree is at its highest water potential (Ritchie and Hinckley 1975). During drought stress, leaf water 
potential decreases (Breshears et al. 2009). Because both the equipment is expensive and the 
measurements are very laborious, this technique is not used to monitor tree stands in a city, for 
example. With limitations, it can be used in horticulture. There, measurements are mainly made during 
the day (Lampinen et al. 2001; Moriana et al. 2012; Mirás-Avalos et al. 2016). 

  



4 Electrical pulse resistance measurements using Treesense Pulse 
sensors as an example 

 

Since 2020, sensors for monitoring the hydrological status of trees have been manufactured by the 
company Treesense GmbH. The sensors measure the electrical resistance between two electrodes in 
the sapwood at 15 min intervals, which depends significantly on the moisture content of the wood. 
The compact sensor box (dimensions 8.5 x 5.5 x 3.5 cm, weight 150g) contains a LoRa antenna, which 
allows the data to be sent via a gateway to a cloud and thus in real time to the user. The power supply 
is initially ensured by a battery/accumulator (1200 mAh). This allows the sensor to operate for 6 
months without additional sunlight. In addition, a solar panel is mounted on the surface of the housing. 
The panel makes it possible to operate the sensor permanently without changing the battery if the 
orientation is suitable.  

For mounting, two holes (1.5 mm diameter) must be drilled approx. 9 mm deep into the sapwood at a 
distance of 2 cm. Brass screws are screwed into the wood as electrodes. At the same time, a silicone 
carrier for mounting the sensor box is attached to the screws. Pre-drilling and screwing in causes small 
wounds. However, these wounds are located in the outer sapwood and thus in very reactive tissue 
(Shigo 1984), so that no relevant damage is caused to the woody material. Due to the shallow depth 
of the bolts and annual growth, exacerbated by wound reaction, the sensors must be relocated and 
maintained every half year. The rest of the time there is no maintenance. 

Due to the thickness of the bark in conjunction with the short electrode screws, the sensors are not 
mounted at chest level but inside the crown. In conjunction with the small device size, this is 
particularly attractive in the city, as the sensors can thus be operated inconspicuously. Vandalism of 
the devices is almost impossible. Since the sensor is very cost-effective compared to other sensor 
technology, measured values can be collected over a large area.  

The sensors output the electrical resistance in kΩ as measured values. These values are initially 
dependent on the ambient temperature of the sensors. For this reason, calibration series were 
performed to establish a compensation function. In the software, both the compensated values and 
the raw data can be retrieved. Furthermore, the measured values depend on the tree species for wood 
anatomical and chemical reasons. Since the electrical conductivity can differ significantly even within 
a tree species, it is recommended to analyze especially the extent of the resistivity variations and less 
the absolute values. In general, an increase in electrical resistance, i.e. a decrease in conductivity, 
should be interpreted as decreasing sapwood moisture content. 

In order to check whether the measurement series of the Treesense sensors within a tree are 
consistent and their measurements agree with other measurement methods, three Treesense sensors 
were mounted in the field on a beech (forest tree, approx. 30 m high) in the crown at 14 to 20 m height. 
In addition, sap flow (Ekomatik SF-L) and diameter were measured on the tree at a height of 1.3 m 
using a dendrometer (Ekomatik DR). As an example, the values from 5/20/21 to 5/23/21 are shown 
here (Fig. 1-2). Sap flow density reaches high values from 10:00 to 16:00 as a result of transpiration 
(Fig. 1). Water consumption causes the diameter of the tree to decrease during this time (Fig. 1). This 
is in line with expectations (see chapter 2.2). As the tree grows in spring, the curve increases from day 
to day. The temperature compensated values of the Treesense sensors show an increase in resistance, 
i.e. a decrease in moisture, until the afternoon due to water consumption by transpiration (Fig.2). As 
the water reservoirs regenerate overnight, the moisture increases and the resistance decreases again 
by early morning. The curves of the raw data run inversely to this. The curves of the three sensors run 



parallel, but differ in the absolute values. For this reason, it is recommended to primarily evaluate the 
changes in the resistance values. 

 

Fig. 1: Sap flow density and diameter changes of a beech tree about 30 m high. 

 

Fig. 2: Electrical resistance of 3 sensors within the crown (raw data (solid line) and compensated 
values (dotted line)) of beech from Fig. 1. 

The sensors were further tested under standardized conditions in the greenhouse on 8 young lemon 
trees in 5.6 L pots to show the behavior of the trees and the response of the resistance values to 
increasing drought stress (Fig. 3-4). For this purpose, the lemons were irrigated with 500 ml of water 
at the beginning of each week. In between, no more water was given. The soil moisture in the pot then 
decreased by about 10 to 15 % (Fig. 4). Diameter variation was also recorded dendrometrically on two 
trees (Fig. 3). The dendrometer measurements confirm that the plants lose diameter after 3 to 4 days 
without watering due to transpiration losses. The raw data of the resistance values of the 8 trees 
basically show a parallel trend. The drier the soil and the higher the drought stress level becomes, the 
higher the electrical resistance values become. However, as in the case of beech, the absolute level of 
the measurements differs significantly. The diurnal variations are clearly visible. During the day, 
electrical resistivity in the raw data decreases somewhat, while it increases again at night. 



Nevertheless, a trend caused by drought is clearly visible. Water deficiency in the trees can thus be 
detected with the help of Treesense Pulse sensors. 

 

Fig. 3: Electrical resistance (in kΩ, raw data) and diameter (in nm) of 2 lemon trees.

 

 

Fig. 4: Electrical resistance (in kΩ, raw data) and soil moisture (in %) of 8 lemon trees. 

  



5 Possible applications of electrical pulse resistance measurement 
5.1 Urban tree population 
 

Particularly in the urban environment, high expectations are placed on a tree stand. Trees are expected 
to provide a variety of ecosystem services such as carbon sequestration, reduction of heat, dust, and 
pollutants, in addition to bringing an aesthetic appearance and being safe for traffic (Bowler et al. 2010; 
Escobedo et al. 2011; Soares et al. 2011; Roeland et al. 2019). These requirements can only be achieved 
with healthy, vital trees. However, the increasing effects of climate change are expected to increase 
the proportion of dying and diseased trees in urban areas (Savi et al. 2015). Drought stress, in 
particular, is a driver of tree mortality and makes trees susceptible to disease and pests (Choat et al. 
2018). Ecosystem services such as urban cooling can also only be achieved if sufficient water is 
available for transpiration (Konarska et al. 2016). Irrigation of trees is one way to mitigate the effects 
of climate change on trees and thus maintain their functions. Drought stress should be identified 
before visible signs are evident, if possible. This allows ecosystem services to be maintained and 
resources to be used efficiently (Gimpel et al. 2021). To date, however, it has been difficult or very 
costly to make decisions about the use of irrigation measures based on metrics. This is possible with 
low-cost, and therefore area-wide, real-time systems such as Treesense Pulse. With such a system, 
only those trees that actually need water are irrigated. In addition to monitoring existing trees, the 
system can also be used well for monitoring new plantings or in the context of construction sites, e.g. 
with groundwater lowering to monitor affected tree stands. 

5.2 Horticulture 
 

Irrigation management has a major impact on the performance of horticultural crops. Excessive levels 
of drought stress or watering can reduce growth in nursery crops as well as fruit yield and fruit quality 
in orchards (García-Tejero et al. 2010; Chappell et al. 2013; Vera et al. 2013). A great many methods 
have been used to implement irrigation management based on tree physiological measurements 
(Brough et al. 1986; Ben-Gal et al. 2010; Fernández and Cuevas 2010; Cohen et al. 2001) including 
measurements of stem water content (Nadler et al. 2006; Gao et al. 2020). Electrical impedance 
measurements offer the possibility of inexpensive, area-wide data on the hydrophysiological condition 
of trees by radio in real time and to control irrigation according to demand. 

5.3 Science 
 

Small, lightweight, current-independent, low-maintenance and low-cost sensors, which allow a 
statement to be made about the water content in the xylem, offer the possibility of answering a wide 
range of ecophysiological questions. With respect to the individual tree, the sensors can be mounted 
anywhere, even in the outer branch area. Thus, three-dimensional measurement networks can be 
created to display hydrophysiological reactions spatially and in a high temporal resolution. 
Furthermore, it is possible to monitor large areas, for example in forests, with a finer mesh than before. 
Due to the favorable price, the number of measuring points can be increased. Provided that a mobile 
radio signal is available and the gateway is supplied with power via a solar panel, the data can also be 
processed from remote areas in real time. 

  



6 Conclusion 
 

Due to increasing drought stresses on trees, the need for tree physiology-based tree monitoring for 
intensively used trees will increase greatly in the future. Previous methods already allow such 
monitoring, but not to the extent needed because the measurements are labor-intensive, or the 
measuring devices are expensive and require high maintenance. With the electrical resistance 
measurements of the sensors from Treesense, a method is now available that significantly increases 
the applicability in practice. On the one hand, reliable values are produced that are in line with other 
measurement methods, and on the other hand, the sensors are inexpensive and can therefore be used 
in large quantities. This enables the user to monitor even larger tree populations. Irrigation decisions 
can thus be made based on tree physiology and in a targeted manner. This allows considerable savings 
in the use of resources such as water and personnel.  
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