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This discussion is triggered in part by the book [1], and the need to have small antennas with good 
front to back ratios. Needed for this are modern mathematical tools as well as test equipment.  

As an example of mathematical tools, Hallén wrote his famous integral equation to give an exact 
treatment of antenna current wave reflection at the end of a tube shaped cylindrical antenna in 
1956, but his first work on this subject [2] probably goes back to 1938. This equation enabled him 
to show that on a thin wire the current distribution is approximately sinusoidal and propagates with 
nearly the speed of light. For this treatment that is an important contribution. 
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We will learn here that by optimizing the effective length of a rod antenna, it will become 
directional and will have a radiation pattern that provides gain. Any antenna has a physical 
dimension, and the most relevant one is the antenna height. For a ground mounted vertical antenna, 
the mirror image in the ground is also considered, and the total length is called the effective length. 
In this discussion only the magnitude of leff is of interest. The definition of “effective length” is 
going to be the key point and its value can generate some “interesting effects”. 

In general, following the common tradition we assume all ideal conditions for a better under-
standing of the topic! 

Now let us get started: 

Antennas are key elements for communication, both for receive and transmit and there is a certain 
fascination with their design, 

It all started with the Hertzian dipole as illustrated in Fig. 1(a) and its understanding and 
mathematical treatment [3]. 

 
Fig 1. (a) Electrical dipole, charges +Q and -Q are changing periodically and harmonically as a function of 
t and with period T (sinusoidal). Source: [3]. 

It is assumed that the charges change periodically producing a current 

𝑖𝑖 = −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −
1
𝑙𝑙
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= +
2𝜋𝜋𝑄𝑄0
𝑇𝑇

sin �
2𝜋𝜋𝜋𝜋
𝑇𝑇
�+= +2𝜋𝜋𝜋𝜋𝑄𝑄0 sin(2𝜋𝜋𝜋𝜋𝜋𝜋), 

where  

𝑓𝑓(𝑡𝑡) = 𝑄𝑄0𝑙𝑙 cos �
2𝜋𝜋𝜋𝜋
𝑇𝑇
� = 𝑄𝑄0𝑙𝑙 cos(𝜔𝜔𝜔𝜔). 

Again, here mostly the magnitude of leff =l is of interest.  
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Now let’s look at the real-life situation. An electric field (Ei) multiplied with the effective length of the 
antenna (leff) generates an EMF (electromotive force). 

We also notice that the antenna wire is not straight but has a specific shape, this will be the topic of this 
discussion. The effective length of an antenna multiplied with the electrical field Ei results in an EMF V0, 
seen in Fig. 1(b). 

 
Fig. 1(b): Polar Co-ordinates around the Dipole, see the charges +q and –q. Source: [3]. 

 

 

 

 

 

 
 

 

 
Fig. 2: The equivalent circuit of an antenna exposed to an electric field Ei. Source: [3]. 
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Fig. 3. Showing the effective length leff. Source: [3]. 

 

The following derivation is based in part on [1].  

The following equations show the vector components of the electrical and magnetic fields relative 
to the isotropic antenna: 

𝔈𝔈x  =
3𝑥𝑥𝑥𝑥
𝑟𝑟5

𝑓𝑓 +
3𝑥𝑥𝑥𝑥
𝑐𝑐𝑟𝑟4

𝑓𝑓′ +
𝑥𝑥𝑥𝑥
𝑐𝑐2𝑟𝑟3

𝑓𝑓′′ = �
3
𝑟𝑟3
𝑓𝑓 +

3
𝑐𝑐𝑟𝑟2

𝑓𝑓′ +
1
𝑐𝑐2𝑟𝑟

𝑓𝑓′′� cos𝜑𝜑 cos𝜗𝜗 sin𝜗𝜗,

𝔈𝔈y  =
3𝑦𝑦𝑦𝑦
𝑟𝑟5

𝑓𝑓 +
3𝑦𝑦𝑦𝑦
𝑐𝑐𝑟𝑟4

𝑓𝑓′ +
𝑦𝑦𝑦𝑦
𝑐𝑐2𝑟𝑟3

𝑓𝑓′′ = �
3
𝑟𝑟3
𝑓𝑓 +

3
𝑐𝑐𝑟𝑟2

𝑓𝑓′ +
1
𝑐𝑐2𝛾𝛾

𝑓𝑓′′� sin𝜑𝜑 cos𝜗𝜗 sin𝜗𝜗,

ℌz  =
3𝑧𝑧2 − 𝑟𝑟2

𝑟𝑟5
𝑓𝑓 +

3𝑧𝑧2 − 𝑟𝑟2

𝑐𝑐𝑟𝑟4
𝑓𝑓′ +

𝑧𝑧2 − 𝑣𝑣2

𝑐𝑐2𝑟𝑟3
𝑓𝑓′′,

 = − �
𝑓𝑓
𝑟𝑟3

+
1
𝑐𝑐𝑟𝑟2

𝑓𝑓′ +
1
𝑐𝑐2𝑟𝑟

𝑓𝑓′′� + �
3
𝑟𝑟3
𝑓𝑓 +

3
𝑐𝑐𝑟𝑟2

𝑓𝑓′ +
1
𝑐𝑐2𝑟𝑟

𝑓𝑓′′� cos2 𝜗𝜗 ,

ℌx =
𝑦𝑦
𝑐𝑐𝑟𝑟3

𝑓𝑓′ −
𝑦𝑦

𝑐𝑐2𝑟𝑟2
𝑓𝑓′′ = −

1
𝑐𝑐
�
𝑓𝑓′

𝑣𝑣2
+

1
𝑐𝑐𝑐𝑐
𝑓𝑓′′� sin𝜑𝜑 sin𝜗𝜗 ,

ℌy =
𝑥𝑥
𝑐𝑐𝑟𝑟3

𝑓𝑓′ +
𝑥𝑥

𝑐𝑐2𝑟𝑟2
𝑓𝑓′′ = +

1
𝑐𝑐
�
𝑓𝑓′

𝑣𝑣2
+

1
𝑐𝑐𝑐𝑐
𝑓𝑓′′� cos𝜑𝜑 sin𝜗𝜗 ,

ℌz = 0

𝔈𝔈𝜗𝜗 = −�
𝑓𝑓
𝑟𝑟3

+
1
𝑐𝑐𝑣𝑣2

𝑓𝑓′ +
1
𝑐𝑐2𝑟𝑟

𝑓𝑓′′� sin𝜗𝜗 ,

𝔈𝔈𝑟𝑟 = 2 �
𝑓𝑓
𝑟𝑟3

+
𝑓𝑓′

𝑐𝑐𝑟𝑟2
� cos𝜗𝜗 ,

 

𝔈𝔈𝜚𝜚 = �𝔈𝔈𝑥𝑥2 + 𝔈𝔈𝑦𝑦2 = 𝑧𝑧𝑧𝑧
𝑟𝑟3
�3𝑓𝑓
𝑣𝑣2

+ 3𝑓𝑓′

𝑐𝑐𝑐𝑐
+ 𝑓𝑓′′

𝑐𝑐2
�, 
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𝔈𝔈𝑧𝑧 =
2
𝑣𝑣2
�
𝑓𝑓
𝑟𝑟

+
𝑓𝑓′

𝑐𝑐
� −

𝜚𝜚2

𝑟𝑟3
�
3𝑓𝑓
𝑣𝑣2

+
3𝑓𝑓′

𝑐𝑐𝑐𝑐
+

1
𝑐𝑐2
𝑓𝑓′′� , 

ℌ𝜑𝜑 = −
𝜚𝜚
𝑟𝑟2
�
𝑓𝑓′

𝑐𝑐𝑐𝑐
+

1
𝑐𝑐
𝑓𝑓′′�, 

where 𝜚𝜚 =  �𝑥𝑥2 + 𝑦𝑦2. 

Here are the function f and its derivatives referred to above: 

𝑓𝑓(𝑡𝑡) =
𝐼𝐼0𝑙𝑙
𝜔𝜔

cos�𝜔𝜔 �𝑡𝑡 −
𝑟𝑟
𝑐𝑐
�� = 𝑄𝑄0𝑙𝑙 cos�𝜔𝜔 �𝑡𝑡 −

𝑟𝑟
𝑐𝑐
��. 

𝑓𝑓′(𝑡𝑡) = −𝐼𝐼0𝑙𝑙 sin�𝜔𝜔 �𝑡𝑡 −
𝑟𝑟
𝑐𝑐
�� = −𝑄𝑄0𝑙𝑙𝑙𝑙 sin�𝜔𝜔 �𝑡𝑡 −

𝑟𝑟
𝑐𝑐
�� , 

𝑓𝑓′′(𝑡𝑡) = −𝐼𝐼0𝑙𝑙𝑙𝑙 cos�𝜔𝜔 �𝑡𝑡 −
𝑟𝑟
𝑐𝑐
�� = −𝑄𝑄0𝑙𝑙𝜔𝜔2 cos�𝜔𝜔 �𝑡𝑡 −

𝑟𝑟
𝑐𝑐
��  . 

The part (t - r/c), where t is time, r is the length of the vector and c the speed of light, indicates that 
there is a delay of the electromagnetic wave which is delayed at the distance ‘r’ at the time ‘t’ so 
the value of the function cannot be achieved at the time ‘t’, the delay is r/c, called retardation. 

For the far field the results are: 

𝔈𝔈𝑥𝑥 = 1
𝑐𝑐2𝑟𝑟

𝑓𝑓′′ cos𝜑𝜑 cos𝜗𝜗 sin𝜗𝜗 ,     ℌ𝑥𝑥 = − 1
𝑐𝑐2𝑟𝑟

𝑓𝑓′′sin 𝜑𝜑sin 𝜗𝜗, 

𝔈𝔈𝑦𝑦 =
1
𝑐𝑐2𝑟𝑟

𝑓𝑓′′sin 𝜑𝜑cos 𝜗𝜗sin 𝜗𝜗, ℌ𝑦𝑦 = +
1
𝑐𝑐2𝑟𝑟

𝑓𝑓′′cos 𝜑𝜑sin 𝜗𝜗

𝔈𝔈𝑧𝑧 = −
1
𝑐𝑐2𝑟𝑟

𝑓𝑓′′sin2 𝜗𝜗, ℌ𝑧𝑧 = 0
� 

ℌ𝜑𝜑 = − 1
𝑐𝑐2𝑟𝑟

𝑓𝑓′′sin 𝜗𝜗, 
𝔈𝔈𝑟𝑟 = 0, 

ℌ𝜑𝜑 = −
1
𝑐𝑐2𝑟𝑟

𝑓𝑓′′sin 𝜗𝜗 

𝔈𝔈𝜚𝜚 = 2𝜚𝜚
𝑐𝑐2𝑟𝑟3

𝑓𝑓′′ = 1
𝑐𝑐2𝑟𝑟

𝑓𝑓′′cos 𝜗𝜗sin 𝜗𝜗, 

𝔈𝔈𝑧𝑧 = − 𝜚𝜚2

𝑟𝑟3𝑐𝑐2
𝑓𝑓′′ = − 1

𝑐𝑐2𝑟𝑟
𝑓𝑓′′sin2 𝜗𝜗, 

ℌ𝜑𝜑 = − 1
𝑐𝑐2𝑟𝑟

𝑓𝑓′′sin 𝜗𝜗, 
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𝔈𝔈∂ =
2𝜋𝜋𝐼𝐼0𝑙𝑙
𝑐𝑐𝑐𝑐𝑐𝑐

sin𝜗𝜗 cos�𝜔𝜔 �𝑡𝑡 −
𝑟𝑟
𝑐𝑐
��  =

4𝜋𝜋2𝑄𝑄0𝑙𝑙
𝜆𝜆2𝑟𝑟

sin𝜗𝜗 cos 𝜔𝜔‾ ,

𝔈𝔈𝑟𝑟 = 0,

ℌ 𝜑𝜑 = −
2𝜋𝜋𝐼𝐼0𝑙𝑙
𝑐𝑐𝑐𝑐𝑐𝑐

sin𝜗𝜗 cos�𝜔𝜔 �𝑡𝑡 −
𝑟𝑟
𝑐𝑐
��  = −

4𝜋𝜋2𝑄𝑄0𝑙𝑙
𝜆𝜆2𝑟𝑟

sin𝜗𝜗 cos 𝜔𝜔‾ ,

𝔈𝔈𝜚𝜚 = −
2𝜋𝜋𝐼𝐼0𝑙𝑙
𝑐𝑐𝑐𝑐𝑐𝑐

sin 𝜗𝜗cos 𝜗𝜗cos�𝜔𝜔 �𝑡𝑡 −
𝑟𝑟
𝑐𝑐
��  = −

4𝜋𝜋2𝑄𝑄0𝑙𝑙
𝜆𝜆2𝑟𝑟

sin 𝜗𝜗 cos𝜗𝜗 cos 𝜔𝜔‾ ,

𝔈𝔈𝑧𝑧 =
2𝜋𝜋𝐼𝐼0𝑙𝑙
𝑐𝑐𝑐𝑐𝑐𝑐

sin2 𝜗𝜗cos�𝜔𝜔 �𝑡𝑡 −
𝑟𝑟
𝑐𝑐
��  =

4𝜋𝜋2𝑄𝑄0𝑙𝑙
𝜆𝜆2𝑟𝑟

sin2 𝜗𝜗cos 𝜔𝜔‾ ,

ℌ𝜑𝜑 = −
2𝜋𝜋𝐼𝐼0𝑙𝑙
6𝑟𝑟𝑟𝑟

sin 𝜗𝜗cos�𝜔𝜔 �𝑡𝑡 −
𝑟𝑟
𝑐𝑐
��  = −

4𝜋𝜋2𝑄𝑄0𝑙𝑙
𝜆𝜆2𝑟𝑟

sin 𝜗𝜗cos 𝜔𝜔‾ .
⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

 

As a result of this we can calculate the field at various regions: 

𝔈𝔈𝑧𝑧  =
4𝜋𝜋2

𝜆𝜆2
𝑇𝑇0𝑙𝑙
𝑐𝑐

[
2 − 3sin2 𝜗𝜗

𝑎𝑎3
cos�𝜔𝜔 �𝑡𝑡 −

𝑎𝑎𝑎𝑎
2𝜋𝜋𝜋𝜋

��  
���������������������

Near flield

+
3sin2 𝜃𝜃 − 2

𝑎𝑎2
sin�𝜔𝜔 �𝑡𝑡 −

𝑎𝑎𝑎𝑎
2𝜋𝜋𝜋𝜋

��  
���������������������

Middle field

+
sin2 𝜗𝜗
𝑎𝑎

cos�𝜔𝜔 �𝑡𝑡 −
𝑎𝑎𝑎𝑎

2𝜋𝜋𝜋𝜋
��  

�����������������
Far field

,
 

with 𝑎𝑎 = 2𝜋𝜋𝜋𝜋/𝜆𝜆 . 

The total radiation is 

𝑁𝑁𝑆𝑆𝑇𝑇 =
𝐼𝐼02𝜔𝜔2𝑙𝑙2

4𝜋𝜋𝑐𝑐3
�  
2𝜋𝜋

0
 �  

𝜋𝜋

0
 �  

𝑇𝑇

0
 cos2

2𝜋𝜋
𝑇𝑇
�𝑡𝑡 −

𝑟𝑟
𝑐𝑐
� 𝑑𝑑𝑑𝑑 sin3𝜗𝜗𝜗𝜗𝜗𝜗𝜗𝜗𝜗𝜗 ,

𝑁𝑁𝑆𝑆𝑇𝑇 =
𝐼𝐼02𝜔𝜔2𝑙𝑙2𝑇𝑇

3𝑐𝑐3
=

4𝜋𝜋2𝐼𝐼02

3𝑐𝑐
�
𝑙𝑙
𝜆𝜆
�
2

𝑇𝑇 =
16𝜋𝜋4𝑙𝑙2𝑄𝑄02

3𝜆𝜆3
.

 

T: time period 

The energy radiated is 

𝑁𝑁𝑆𝑆 =
4𝜋𝜋2𝐼𝐼02

3𝑐𝑐
�
𝑙𝑙
𝜆𝜆
�
2

=
8𝜋𝜋2𝐼𝐼ett2

3𝑐𝑐
�
𝑙𝑙
𝜆𝜆
�
2

=
16𝜋𝜋4𝑙𝑙2𝑄𝑄02𝑐𝑐

3𝜆𝜆4
. 

Expressed 𝐼𝐼eff in Ampere we get 

𝑁𝑁𝑆𝑆 = 80𝜋𝜋2 �
𝑙𝑙
𝜆𝜆
�
2

𝐼𝐼eff 
2  W  
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or the Radiation resistance is 

𝑅𝑅𝑆𝑆 = 80𝜋𝜋2 �𝑙𝑙
𝜆𝜆
�
2

Ohm. 

The resulting radiation pattern as a function of time is shown in Fig. 4. 

 
Fig. 4: Radiation pattern with reference to T. Source: [3]. 

Important: l is not the mechanical length but the electrical length, leff ~ l/1.56,   

𝑅𝑅𝑆𝑆 = 80𝜋𝜋2 �𝑙𝑙 𝑥𝑥 0.64
𝜆𝜆

�
2

Ohm = 36.6. 

Typically a factor of 2 is used, instead of 1.56, depending upon the definition of the length (mirror 
image in the ground). If the actual antenna at resonance due to the end effect is slightly inductive, 
it typically will be cut short and the error at the feeding point (imaginary part) will be compensated 
by a suitable matching network. The exact reason for the 0.64 correction factor is that the voltages 
and currents are sinusoidal only when the wire is very thin.  

Fig. 5 presents a plot that shows the radiation resistance as a function of the length to wavelength 
ratio. 
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Fig. 5: Plot showing the radiation resistance as a function of the length to wavelength ratio. Source: [3]. 

If the radiating rod is curved as shown in Fig. 6, an approximation as shown below can be used to 
calculate the electrical field. 

 
Fig 6: Approximate electrical field calculation for a curved radiating rod. Source: [3]. 

Fig. 7 (a)-(f) show the radiation patterns/curves as a function of varying time 𝜔𝜔t. 
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Fig. 7 (a): Radiation patterns as a function of different 𝝎𝝎t (𝝎𝝎t=5° of 360°). Source: [3]. 

 

Fig. 7 (b): Radiation patterns as a function of different 𝝎𝝎t (𝝎𝝎t=57°). Source: [3]. 

 

Fig. 7 (c): Radiation patterns as a function of different 𝝎𝝎t (𝝎𝝎t=60°). Source: [3]. 
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Fig. 7 (d): Radiation patterns as a function of different 𝝎𝝎t (𝝎𝝎t=63°). Source: [3]. 

 

Fig. 7(e): Radiation patterns as a function of different 𝝎𝝎t (𝝎𝝎t=116.5°). Source: [3]. 

 
Fig. 7 (f): Radiation patterns as a function of different 𝝎𝝎t (𝝎𝝎t = 118°). Source: [3]. 
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The example shown in Fig. 7 (a)-(f), is a vertical rod antenna, as we all know. There are 
circumstances where the antenna is not straight but curved. An early example is a trailing antenna 
from an airplane [2]. 

As an example we will use the curved shape antenna shown in Fig. 8. It is interesting to know that 
the end effect of the antenna, as described by the Hallén’s integral equation is equivalent to the 
end effect radiation in microstrips. This type of antenna is called a thin curvilinear monopole.  

This assumes that the ratio (l/d) is smaller than 0.01. 

The reason why the curved antenna is of interest is to make improvement to the military Manpack 
with the tilted antenna as shown in Fig. 8. If the antenna could be optimized in such a way that it 
shows gain, the effect of the building on the left side would be compensated for.  

 
Fig. 8: Military Manpack with a straight whip antenna. 

An antenna can also be described as an open-ended transmission line where the open end has the 
highest voltage and the other side has the highest current. To be specific, this transmission line is 
lossy, so the hyperbolic tension function is applicable. This also means compared to a parallel 
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tuned circuit, the antenna radiates at odd multiples (like 3, 5, 7…) of the fundamental frequency. 
The next relevant question is the input impedance. This can be determined from the following 
approximation equations [4] [8]-[10].  

Input impedance Zin = (Za
2)/Rs (where Rs is the radiation resistance) with 

𝑍𝑍𝑎𝑎  =  �𝐿𝐿𝑎𝑎 𝐶𝐶𝑎𝑎⁄ , 

where ‘l’ is the antenna length in meters and, ‘d’ is the wire diameter in meters. 

As an example of a 4 MHz, 40 m long dipole (20 m each side) with 2 mm thickness would be  

𝐿𝐿𝑎𝑎 = �
𝑙𝑙𝜇𝜇0
2𝜋𝜋

ln
4𝑟𝑟
𝐷𝐷
� = 10x10−7 

𝐶𝐶 =
20 pF

m
, so 𝐶𝐶𝑎𝑎 = 20𝑥𝑥20 = 400 pF 

𝑍𝑍𝑎𝑎  =  �10x10−7 400x10−12⁄ = 50 Ω 

Let us assume a quarter wave antenna, with a radiation resistance of Rs of 36.6 Ω,  

Input impedance Zin = (50)2/36.6 = 68, Za is an approximation. 

The exact solution is obviously [9] 

𝑍𝑍11 = 30 ∫  𝑗𝑗2𝜋𝜋𝜋𝜋
0

1−𝑒𝑒−𝑤𝑤

𝑤𝑤
𝑑𝑑𝑑𝑑. 

The integral 𝑍𝑍11 is an exponential integral with imaginary argument.  

In our case 𝑦𝑦 = 2𝜋𝜋𝜋𝜋. This integral can be expressed in terms of the sine and cosine integrals. 

The input-impedance is 

𝑍𝑍11 = 𝑅𝑅11 + 𝑗𝑗𝑋𝑋11 = 30[Cin(2𝜋𝜋𝜋𝜋) + 𝑗𝑗 Si(2𝜋𝜋𝜋𝜋)],
𝑍𝑍11 = 30[0.577 + ln(2𝜋𝜋𝜋𝜋) − Ci(2𝜋𝜋𝜋𝜋) + 𝑗𝑗Si(2𝜋𝜋𝜋𝜋)]. 

For a thin linear antenna of half a wavelength (S. A. Schelkunoff, Applied Mathematics for 
Engineers and Scientists, Van Nostrand, New York, 1948. p377) it is found 

𝑍𝑍11 = 𝑗𝑗30�  
𝑙𝑙

0
�
𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

𝑧𝑧
+
𝑒𝑒−𝑗𝑗𝑗𝑗(𝑙𝑙−𝑧𝑧)

𝑙𝑙 − 𝑧𝑧
� sin𝛽𝛽𝛽𝛽 𝑑𝑑𝑑𝑑. 

Applying de Moivre's theorem to sin 𝛽𝛽𝛽𝛽, gives 

𝑍𝑍11 = −15�  
𝑙𝑙

0
�
𝑒𝑒−𝑗𝑗2𝛽𝛽𝛽𝛽 − 1

𝑧𝑧
−
𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗�𝑒𝑒𝑗𝑗2𝛽𝛽𝛽𝛽 − 1�

𝑙𝑙 − 𝑧𝑧
� 𝑑𝑑𝑑𝑑. 
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For 𝑙𝑙 = 𝑛𝑛𝑛𝑛/2 where 𝑛𝑛 = 1,3,5, … , 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗 = −1, so that (38) becomes 

𝑍𝑍11 = −15�  
𝑙𝑙

0
 �
𝑒𝑒−𝑗𝑗2𝛽𝛽𝛽𝛽 − 1

𝑧𝑧
+
𝑒𝑒𝑗𝑗2𝛽𝛽𝛽𝛽 − 1
𝑙𝑙 − 𝑧𝑧

�𝑑𝑑𝑑𝑑

𝑍𝑍11 = 15�  
𝑙𝑙

0
 
1 − 𝑒𝑒−𝑗𝑗2𝛽𝛽𝛽𝛽

𝑧𝑧
𝑑𝑑𝑑𝑑 + 15�  

𝑙𝑙

0
 
1 − 𝑒𝑒𝑗𝑗2𝛽𝛽𝛽𝛽

𝑙𝑙 − 𝑧𝑧
𝑑𝑑𝑑𝑑

 

−15�  
0

2𝜋𝜋𝜋𝜋

1 − 𝑒𝑒𝑗𝑗(2𝜋𝜋𝜋𝜋−𝑣𝑣)

𝑣𝑣
𝑑𝑑𝑑𝑑 = 15�  

2𝜋𝜋𝜋𝜋

0

1 − 𝑒𝑒−𝑗𝑗𝑗𝑗

𝑣𝑣
𝑑𝑑𝑑𝑑 

Equations (41) and (42) are definite integrals of identical form. Since their limits are the same, 
they are equal. Therefore, (40) becomes 

𝑍𝑍11 = 30�  
2𝜋𝜋𝜋𝜋

0

1 − 𝑒𝑒−𝑗𝑗𝑗𝑗

𝑢𝑢
𝑑𝑑𝑑𝑑. 

If we now set 𝑤𝑤 = 𝑗𝑗𝑗𝑗, (43) transforms to 

𝑍𝑍11 = 30�  
𝑗𝑗2𝜋𝜋𝜋𝜋

0

1 − 𝑒𝑒−𝑤𝑤

𝑤𝑤
𝑑𝑑𝑑𝑑 

The integral in (44) is an exponential integral with imaginary argument. 

This integral can be expressed in terms of the sine and cosine integrals  

Hence, the input-impedance is 

𝑍𝑍11 = 𝑅𝑅11 + 𝑗𝑗𝑋𝑋11 = 30[Cin(2𝜋𝜋𝜋𝜋) + jSi(2𝜋𝜋𝜋𝜋)],
𝑍𝑍11 = 30[0.577 + ln(2𝜋𝜋𝜋𝜋) − Ci(2𝜋𝜋𝜋𝜋) + 𝑗𝑗Si(2𝜋𝜋𝜋𝜋)]. 

The more general situation, where the antenna length 𝑙𝑙 is not restricted at an odd number of 𝜆𝜆/2, 
has also been treated. The antenna is center-fed, and the current distribution is assumed to be 
sinusoidal.  

The input impedance for this case is  

𝑅𝑅11 = 30 ��1 − cot2 
𝛽𝛽𝛽𝛽
2
�Cin 2𝛽𝛽𝛽𝛽 + 4 cot2

𝛽𝛽𝛽𝛽
2

Cin𝛽𝛽𝛽𝛽+2 cot
𝛽𝛽𝛽𝛽
2

 (si 2𝛽𝛽𝛽𝛽 − 2𝑠𝑠𝑠𝑠𝑠𝑠�� . 

The above discussion of this section applies to balanced centered antennas. For a thin linear stub 
antenna of height ‘l’ perpendicular to an infinite, perfectly conducting ground, the self-impedance 
is half of that for the corresponding balanced type. The general formula for input resistance can be 
converted for a stub antenna above a ground plane by changing the factor 30 to 15 and making the 
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substitution 𝑙𝑙 = 21. The formulas can be converted for a stub antenna with ground plane where 
the antenna is an odd number 𝑛𝑛 of 𝜆𝜆/4 long by changing the factor 30 to 15. In this case we get 

                                                               Z11=36.6 Ohm + j 21 Ohm 

Assuming this antenna which should resonate at about 4 MHz, we can determine the combination 
of radiation losses and other losses. A FoM (figure of Merit) is the standing wave ratio of 2.6, and 
the actual 3dB bandwidth will be about 200 kHz. This means that the operating Q of the antenna 
is 20. These are not common losses, but are radiation losses [5].  

Derivation: 

The magnitude of the reflection coefficient rho is defined as 

𝜌𝜌(𝑓𝑓): = ��
𝑍𝑍(𝑓𝑓) − 𝑅𝑅
𝑍𝑍(𝑓𝑓) + 𝑅𝑅

�� 

If Zin = (50+j50), half power (-3 dB) or (50-j50), other side of the 3 dB point, 

Then the flection coefficient is at the bandwidth edges are 

𝜌𝜌L: = 𝜌𝜌( Flow) 𝜌𝜌L = 0.447,
𝜌𝜌H: = 𝜌𝜌( Fhigh ) 𝜌𝜌H = 0.447. 

Now find the VSWR versus frequency:  VSWR (f): = 1+𝜌𝜌(f)
1−𝜌𝜌(f)

 and  VSWR at the bandwidth edges: 

VSWR ( Flow ) = 2.618
VSWR ( Fhigh ) = 2.618 

If the bandwidth is much smaller, then there are some inductors or capacitors or a combination of 
(traps), inductors or capacitors, which make the antenna electrically longer at the expense of 
bandwidth.  

Compared to the tube amplifiers modern transistorized amplifiers cannot handle a larger than 1.5 
VSWR and reduce drastically the output power. While the tube amplifiers had a Collins or Low 
Pass filter at the output and could tune out  mismatch the , the solid state amplifier needs to be held 
and resorts to an additional “line flattening circuit that most of the time can handle an VSWR of 3 
and protects the output stage 

Landstorfer [3] notes that curvilinear antennas of general shape suffer from the fact that 
experimental investigations as well as numerical analysis are restricted to a limited number of 
antennas with arbitrary shapes. It is not possible to show all the possibilities of curvilinear wire 
antennas as a whole. The first mention of a quasi curvilinear antenna was found in [2]. Here an 
antenna was dragged by an airplane. Let’s assume that it had the curve shown in Fig. 9 (a) and (b) 
[4]. 
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Fig. 9 (a): Curved antenna. Source: [3]. 

 

This curved antenna can be split in different sections (from 1, 2, 3, 4…. to n).  

The following is a method to breakdown the antenna into small, straight, pieces. 

 

 
Fig. 9(b): Curved antenna split in numerous sections for analysis. Source: [3]. 
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Fig 10: 3-dimensional curvilinear monopole: designations. Source: [3]. 

 

 

The current distribution along the antenna is sinusoidal and will not change even if the antenna 
shape changes, as long as the arc length 2h of the antenna remains constant. 

The shape of the antenna of Fig. 10 can be approximated by n straight-line sections of constant 
length Δs.  

As shown in Fig. 11, the antenna shape is given by the 2n angles α1…. αn and ψ1… ψn or the spatial 
directions of the different antenna sections as described by the unit vector Û1… Ûn 

For a single-wire antenna, maximum directivity is obtained with a configuration completely 
restricted to the E-plane. 

Fig. 12 shows that the profile for maximum directivity differs from that for maximum effective 
height in that it has a smaller tilt and is superior in directivity by about 0.6 dB. 
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Fig 11: 3-dimensional curvilinear monopole approximated by n straight line sections: designations.      

Source: [3]. 

 

 
Fig 12: (a) Continuous profile for maximum directivity and maximum effective length (b) λ0 - monopole 

optimized for maximum directivity. Source: [3]. 
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One can show that a simple stick model of the monopole can also be optimized for maximum gain 
with 3 piecewise linear sections as shown in Figure 13.  That monopole is over a perfectly 
electrically conducting (PEC) ground plane.  The optimization varied the lengths of each section 
to achieve the goal of the maximum gain along the ground plane (theta = 90 degrees) as well as to 
achieve a second goal of a VSWR less than 1.1 into 50 ohms.  The optimized sections were as 
follows:  Length of the fed section attached to the ground plane is 0.617 wavelengths, length of 
the horizontal section is 0.236 wavelengths, length of the top vertical section is 0.412 wavelengths, 
and the radius of the wires is 0.001 wavelengths. The elevation pattern is shown in Figure 14, and 
the maximum gain is 10.1 dBi or about 5 dB more than for a quarter-wave vertical. 

 
Figure 13: Altair FEKO model of piecewise linear 3 segment monopole. 

 
Figure 14: Elevation pattern of optimized piecewise linear 3 section monopole. 
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Figures 15 to 19 show modern modeling results of the curved monopole, where the results can be 
utilized for further optimization and impedance matching. 

 

 
Fig. 15: CST Studio Suite model of ¾ λ antenna curvilinear antenna for simulation. 

 

 
Fig. 16: CST Studio Suite radiation pattern simulation (2D). 
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Fig. 17: CST Studio Suite radiation pattern simulation (3D). 

 

 

 
Fig. 18: Input matching simulated by CST Studio Suite. 

 



 -21- 
 

 
Fig. 19: CST Studio Suite simulated antenna input impedance. 

 

Furthermore, optimization in Altair FEKO has been applied to the same 7 MHz curvilinear antenna 
with a height of 3/4 wavelengths over earth with a relative permittivity of 13 and a conductivity of 
0.005 S/m (average ground conditions) ref [3-7]. A spline representation of the curved wire is input 
to the antenna software with points at each 0.15 wavelengths of height. At each point, the width 
dimension can be stretched plus or minus 0.5 wavelengths maximum. These are the constraints of 
the Genetic Optimization. There are 5 such points to give a maximum height of the antenna of 3/4 
wavelengths. Curvilinear segments form the wire for the Method of Moments formulation. The 
antenna is fed against a conduction ground plane 0.5 wavelengths in diameter above the earth 
ground.  

An optimization was run with maximizing the gain at a 20 degree takeoff angle above the ground 
while also minimizing the peak back lobe in the rear of the pattern from 0 to 90 degrees in elevation 
and 90 to 270 degrees in azimuth. This will find the peak back lobe in this 3D region of space and 
minimize it. This will give the global best front to back ratio that can be achieved for this specified 
region of space.  

Figs. 20 to 24 show all the results from the global Genetic Optimization of the curved antenna 
where the optimized shape has been determined for this height of 3/4 wavelengths above the 
ground. The gain was 4.3 dBi which is about 4.3 dB of gain over a standard 1/4 wavelength 
monopole which has a gain of 0 dBi over earth ground with a good 0.5 wavelength diameter ground 
plane. 
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Figure 20: Altair FEKO model of optimized curved wire shape. 

 

 

 
Figure 21: Current Distribution obtained by Altair FEKO. 
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Fig. 22: 3D Pattern obtained by Altair FEKO. 

 

 
Fig. 23: Azimuth Pattern at a takeoff angle of 20 degrees. 

 



 -24- 
 

 
Fig. 24: Elevation Pattern. 

 

Conclusions 

This paper has shown the historical methods of computing antenna currents on wires of any 
arbitrary shape. Furthermore, the modern Method of Moments technique has been used with the 
Genetic Optimization method to obtain the optimum curved shaped for the wire monopole type of 
antenna to achieve the best front to back ratio for a fixed height of 3/4 wavelengths.  

This is a very simple method to achieve such performance of just one simple wire compared to 
more complex arrays of multiple antennas necessary to achieve similar performance. 
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