A Perpendicular Spin Torque Switching based MRAM for the 28 nm Technology Node

U.K. Klostermann¹, M. Angerbauer¹, U. Grüning¹, F. Kreupl¹, M. Rührig², F. Dahmani³, M. Kund¹, G. Müller¹

- ¹ Qimonda AG
- ² Siemens AG

³ Altis Semiconductor

IEDM 2007

Perpendicular ST-MRAM

U. Klostermann <1>

Outline

Perpendicular Spin Torque (P-ST) based MRAM
 A New Concept

Assessment for 28 nm Node
Data Retention
Low Switching Currents
Cell to Cell Interaction
Barrier Reliability

Cell Layout

Read Analysis

IEDM 2007

Perpendicular ST-MRAM

Conventional MRAM

• WRITE:

Word/Bit line field used to set magnetic free layer

• READ:

Electrical determination of R by sense amplifiers

IEDM 2007

Perpendicular ST-MRAM

Spin Torque Select-Based MRAM

Writing is done by a critical select current

IEDM 2007

Perpendicular ST-MRAM

U. Klostermann <4>

Perpendicular Anisotropy

Perpendicular anisotropy is very high

IEDM 2007

Perpendicular ST-MRAM

U. Klostermann <5>

Realization

Source: "Spin transfer switching in TbCoFe / CoFeB / MgO / CoFeB / TbCoFe magnetoresistive tunneling junctions with perpendicular magnetic anisotropy", M. Nakayama et al., BB-09, 52nd Magnetism and Magnetic Materials Conference (MMM) in Tampa, Nov. 2007

Feasibility of concept is demonstrated MTJ stack engineering is important

IEDM 2007

Perpendicular ST-MRAM

U. Klostermann <6>

Scalability of Activation Energy

High anisotropy ensures scaling below 20 nm

IEDM 2007

Perpendicular ST-MRAM

U. Klostermann <7>

Scalability of Switching Current

IEDM 2007

Perpendicular ST-MRAM

U. Klostermann <8>

Cell to Cell Interaction

Significantly reduced stray field interaction

IEDM 2007

Perpendicular ST-MRAM

U. Klostermann <9>

Impact of Interaction on E_a

structural cell size [F^2 with F = 28 nm]

High data retention at dense spacing

IEDM 2007

Perpendicular ST-MRAM

U. Klostermann <10>

Reliability Estimates

P-ST allows to use high RA for reliable operation

IEDM 2007

Perpendicular ST-MRAM

U. Klostermann <11>

Cell Layout at 28 nm Node

6 F² layout ensures sufficient current drivability

IEDM 2007

Perpendicular ST-MRAM

U. Klostermann <12>

Read Disturb

At $I_c \sim 30 \ \mu\text{A}$ a read current of $I_r \sim 10 \ \mu\text{A} (\gamma \sim 0.3)$ is feasible without read disturb

IEDM 2007

Perpendicular ST-MRAM

U. Klostermann <13>

MTJ Stack Performance

Measured magneto resistance (MR) for in-plane systems

IEDM 2007

Perpendicular ST-MRAM

U. Klostermann <14>

Read Circuit

Typical: $R_0 = 6 \ k\Omega$ $R_1 = 12 \ k\Omega$ $R_{para} = 14 \ k\Omega$

Current compliance avoids read disturb

IEDM 2007

Perpendicular ST-MRAM

U. Klostermann <15>

Read Operation Simulation

IEDM 2007

Perpendicular ST-MRAM

U. Klostermann <16>

Summary

Perpendicular Spin Torque has been studied targeting the 28 nm node.

Expected benefits are:

- Iong data retention (> 10 yrs @ 85°C)
- Iow write current (~ 30 μA)
- small cell sizes (~ 6 F²)
- high write endurance and no read disturb

Random access speeds are 30 ns for read and 10 ns for write.

IEDM 2007

Perpendicular ST-MRAM