Department of Hybrid Electronic Systems

Material and design aspects of ReRAM technology

Kreupl et al., US 2011/0310654 A1

Outline

- □ ReRAM memory technologies (why there is no Memristor)
- □ The cell and its electromagnetic environment
- DC-I(V) sweeps don't tell you the truth (dynamic currents)
- Understanding current overshoot
- □ Where is the resistor in the cell?
- □ How to operate at low currents?
- In-cell resistor
- Contact resistor
- □ Active Feedback Cell (AFC)
- □ Summary

ReRAM Memory Technologies - why there is no Memristor -

□ PCRAM, CBRAM, ReRAM (MeOx) are threshold switches

$$I_{Cell} = \frac{V_{appl} - V_{Cell}}{R_{Bitline}} - C \frac{dV_{Cell}}{dt}$$

- close to V_{Threshold} it can take very long, so you need to operate at V_{appl} > V_{Threshold}
- This makes dV_{cell}/dt big, as time dt is ~ 100 ps

Department of Hybrid Electronic Systems

Typical DC I(V) showing low current operation

Dynamic currents will be much higher

Most published data give I(V) sweeps as evidence for low current. I(V) sweeps don't tell too much about the dynamic currents!

Technische Universität Müncher

Dynamic currents in pulse mode

 High current peaks from capacitance
 The filamentary nature gives very high local temperature – current density!

$$\Box T_{filament} = T_0 + (j^2 \rho) C \quad \text{for } t < 1 \text{ ns}$$
$$\Box T_{filament} = T_0 + j^2 \rho \frac{L^2}{8Ck_{th}} \text{for } t > 1 \text{ ns}$$

High T creates phase transformation, alloying, diffusion, electromigration etc.

□ Key question:

Will the material/cell switch at all if cap-discharge is neglectable – as in 1x nodes?

Will it be stable?

Amorphization and O-loss attributed to high current density

Extensive analysis of nanofilaments in HfO2 by Calka et al. (2013) shows:
 High T creates amorphization, diffusion and movement of oxygen
 Accumulation of oxygen at the Pt anode
 Crystallization of the TiN bottom electrode
 Will this mechanism work if current is reduced ?

Material and design aspects of ReRAM technology - Prof. Dr. Franz Kreupl

Technische Universität Münche

Typical cap-discharge current

Department of Hybrid Electronic Systems

M. Terai et al., EDL 2010

0.1 μ A set, ~1.6 μ A reset by capacitance reduction

- Local capacitance reduction by using CNT contacts
 - ☐ The resistance of the CNT (contact and quantum) shields the external capacitance
 - The small contact area gives very small local capacitance
 - Low current switching possible in a thresholdvoltage controlled cell

Department of Hybrid Electronic Systems

Typical currents and related current densities

Material and design aspects of ReRAM technology - Prof. Dr. Franz Kreupl

Diode/FET or bit/word-line can only shield on long time scales

- Overall capacitive discharge is given by local capacitance which scales with (isolated) feature size
- Transistor has contact and diffusion capacitance, smoothes I_{peak}
- □ But for an high density array, bit/word-line cap is fixed and high!
- Local cap acts as "battery" providing high current density peaks

10 MV/cm

10 MV/cm

30 MV/cm

Department of Hybrid Electronic Systems

Understanding forming and set TiN HfOx, O, M=Hf Ti electrons 0000000 E= 5V/5nm **0**V 0000000 **5**V **5V** 0000000 5nm electrons M O O O O O O E = 4V/4nm0V M O O O O O O O O O O O 4V**4**V M0000000 4nm electrons $MOOOOO_{00}$ 0V M M M M M O O 3V M O O O O O O E= 3V/1nm **3V**

Material and design aspects of ReRAM technology - Prof. Dr. Franz Kreupl

Kreupl et al., :US 2011/0310654 A1 US 2011/0310655 A1 12 US 2011/0310653 A1

1nm

US 2011/0310653 A1

Department of Hybrid Electronic Systems

Current transport during reset

Vicious interdependence

□ High Vform and/or C: □ cap-discharge □ High Iform : □ transistor as current limiter? □ diode as current limiter? □ impact of pulse length? Low on-state resistance □ fraction of one quantum channel best would be Iow Vform and smooth forming - no current peak Need built-in resistor!

Low on-resistance state - a consequence of C-discharge

Material and design aspects of ReRAM technology - Prof. Dr. Franz Kreupl

Pre- or in-cell-resistor needed to scatter charge

Resistance comes from charge scattering

cell-oxides are thinner than the mean free path:

□ therefore we have no scattering

- □ on-resistance is fraction of R_{Klitzing}
- multiple quantum channels are formed

best would be

- High resistance path for the electrons
- □ smooth forming no cap discharge

□Need built-in resistor!

At nano-scale classical continuum is not valid

$$P_V = jE$$

This classical equation is not valid on the scale of mean free path

 electrons relax deep in the contact
 → no direct heating in the MeOx channel
 → heat spreads from contact to filament

How to operate at low currents

Material and design aspects of ReRAM technology - Prof. Dr. Franz Kreupl

Department of Hybrid Electronic Systems

In-cell resistor: MeOx thickness $d > \lambda_e$ (mean free path)

Vacancy engineering for reduction of V_{forming}

Current capping by contact resistance

Contact resistance (CR) contributes severely to overall resistance path

- □ Scales with area what worked at ~100 nm, doesn't at ~10 nm!
- Associated voltage drop at high current densities is high

Current capping by contact resistance

- From TEM one see thick MeOx (> 25 nm) and contact resistance by additional barriers
- High voltage already at very wide cell (cell width not given in paper, but from TEM d >100 nm)
- □ Associated voltage drop at reduced cell size will be huge!

Me: metal or highly doped Si HfO: any switchable MeOx with capping layers for vacancy engineering

- Consider this double-barrier structure (this is not a CRS cell!!)
- This has no forming overshoot due to built-in active feedback

US 2011/0310655 A1 US 2011/0310653 A1

For forming, a voltage is applied to the outer Me electrodes
 The field drops on the HfO layers and leads to O-movement
 The electron tunneling rate is almost equal for both layers, as I will show on the next slide and limits overshoot by active feedback

- Works the same if the other junctions breaks down
- The capacitance of the middle electrode determines the active feedback voltage $\Delta V = ne/C$
- Works instantly and well with diode as selector

Material and design aspects of ReRAM technology - Prof. Dr. Franz Kreupl

equivalent circuit

- Two filaments will form, but current overshoot is tamed by active feedback structure (like over-programming protection in floating gate NAND)
- The active feedback voltage depends on node capacitance of the middle electrode:
- \Box for 1 fF: $\Delta V = 1.6 V$ for 10,000 electrons and current of dQ/dt= 1.6 μ A
- \Box for 10 fF: $\Delta V = 1.6 V$ for 100,000 electrons and current of dQ/dt= 16 μ A

Active Feedback Cell (single junction) with FET

 Works also in single junction mode, if input capacitance of FET is low - small diffusion capacitance —best is vertical FET!!
 Does not work with diode — rf-model of diode is capacitor

Material and design aspects of ReRAM technology - Prof. Dr. Franz Kreupl

Planar FET might have to high capacitance

Therefore only low on-state resistance cycling is possible
 But 10 G cycles have been obtained by short pulses

Integration challenges from SAPD

bit-line

- cost-effective integration requires SAPD
 etching of complicated high aspect structure:
 sidewall implants in cell and diode from RIE
 diffusion of etch species in carefully designed memory cell...
- PIN / PNP

bottom

word-line

- etch-clean in complicated structures
 - □ How to clean etch damage in diode and memory cell?

all "vacancy engineering" is gone after a plasma ash
 " all surface" effects dominate in sub 20 nm

Summary

- □ There is no memristor cap-discharge is the culprit
- Oxygen vacancy ReRAM looks most promising
- Key is
 - □ reduction in operating currents and
 - □achieving higher on-state resistance
- Current overshoot creates several quantum channels in the ReRAM cell, which have low resistance
- Four methods have been proposed to mitigate current overshoot
- Active Feedback Cell with vacancy engineering is most promising
- Key challenge: how stable are low current states? most MeOx studied at high j - what will be the right material?