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Introduction and Motivation

 Resistive Memories like
— Phase Change (Ge,Sb,Te,,.... )
— Nano-lonic, (CBRAM-like, e.g. Ag,S, Ag-GeSe, Cu,S....)
— Transition-Metal-Oxide ( NiO, TiO,,.....)
are very promising memory technologies

e but are binary, ternary or even more complex
materials:
— what about scalability
— how do they respond to volume/surface ratio
— what about variability, if scaled

 Are there other, simpler materials available?
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Introduction and Motivation

« The available current in a memory cell Bit Line

IS given by the select device (FET, diode)

. . resistive
An upper limit may be estimated by: memory

i= &Ny, = €.1019,107 = 16 MA/cm?2  Slement

S
 Typical currents in phase change 1
memories are ~10 MA/cm? =

Are there options or materials
which enable switching
at low currents (some pA)?
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Introduction: Carbon Memory
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Basic Switching in Carbon
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. . . Letters 2006 Vol. 6,
« New: switch to disorder by short pulse No. 8 pp. 1600-1705
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Short Laser Pulses on Graphite
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 Short laser pulse induces disorder (D-band)
e D-band overlaps with sp3-peak at 1332 cm-!

« Diamond cubic phase observed DY =———f 0 - >
e-beam diffraction ‘

=» Disordered, quenched state by short energy pulse

Bonelli et al., Laser-irradiation-induced
structural changes on graphite, Phys. Rev.
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3 ps Laser Pulse on Graphite
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e The shorter the laser pulse the more disorder
=» Disordered, quenched state by short energy pulse

source: Anming Hu, PhD Thesis, U Waterloo, 2008
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Short Energy Pulses

 Fluence of the laser pulse at
graphite ablation threshold =~ 285 mJ/cm?

K. Sokolowski-Tinten et al., CLEO 2000

Energy density (energy/volume) = 95 KJ/cm?3

« Energy density for a wire subjected to a current:

E/V = j?pt = 1GA/cm? -1mQcm - 20 ns =2 MJ/cm?3

=» Disordered, quenched state by short current pulse
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Short Current Pulse

carbon
cell

temperature distribution in carbon filament after
1 ns current pulse with 1.7 GA/lcm?:
Tea ~ 3900 K; rapid cool down (0.05 ns)
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Carbon Nanotubes
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Nanotubes have a length dependent switching current
e 25nm long tubes need ~ 100pA @ 1.5V

and have no phonon-limited transport
tubes > 200 nm need ~ 30 pA @ 4V (phonon-limited)
=» Select device needs to handle ~ 30 pA and 4-8 Volt
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Carbon Nanotubes

In vacuum ~ 12 YA current possible
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Allotropes of Carbon (nvestigated)

Carbon Nanotubes nanotube

- Sp2-type
- difficult to integrate
- high conductivity

Graphene or

Conductive Carbon

- Sp2-type
- easy to integrate

- high conductivity

Insulating carbon

- sp3-type, diamond-like
- easy to integrate
- high resistivity
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Conductive Carbon (CC)

« Conductive Carbon is
— graphene-like
— easily deposited (CVD)

— can be used as interconnect
material (highly conductive)

— easy to pattern
R. Seidel. et al., Chemical Vapor Deposition Growth of

Single-Walled Carbon Nanotubes at 600 °C and a
Simple Growth Model J. Phys. Chem. B, (2004)

G. Aichmayr et al., Carbon-high-k Trench Capacitor for
the 40nm DRAM Generation, VLSI Technology, (2007)

14
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Conductive Carbon: Memory Cell

500 nm
carbon
c?rl_:)on SiN SiN

nitride
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r tungsten
oxide oxide
e« Carbon memory cells
with varying diameter 75nm
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Conductive Carbon: Critical Current

——30nm - @@ | A

— 08 b

o
~
@

— 4 M

.t
w
@

o
N
@

o
@

Ko
£
O
<,
£
u
c
@
©
et
o
QO
=
=
Q

critical current [A]

00G
00 05 10 15 20 25 30
Voltage [V] diameter [nm]

e Critical current density of 350 MA/cm? observed
 Appropriate cell diameter ~ 6 nm for | < 100 pA
= Use spacer, cladding or self-assembled nano-pores

F. Kreupl et al. 16



Conductive Carbon (CC): Switching
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e Shmoo-plot of 40 nm diameter CC memory cell

=» smaller diameter, current compliance and optimized
pulses required
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Insulating Carbon (IC): Memory Cell

insulating
carbon

conducting filament
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e Insulating diamond-like carbon film
e First switching occurs now from high to low state
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Insulating Carbon (IC): Critical Field
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 Quasi-static switching curves determine critical field
« Switching power is about 50uW with leakage currents.
 Very low power levels: 5pA @ 1.5V (P=7.5 uW)
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Ins. Carbon: Read Endurance & Speed

re-adjustment
on-state of the probes
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« Read endurance at 75 degree C:
2.3*10%3 read cycles at 0.1 V.

Switching speed Is faster than 11 ns.
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Insulating Carbon: Switching
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e I(V) curves show similar behavior after pulses

 Resistance level can be trimmed by individual
voltage pulses (multi-level capability)
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Insulating Carbon: Filament size
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10 V pulse evaporates metal = filament ~ 10 nm @ 10 V
=> use carbon as current spreader
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melted metal
thin metallic top contact

J ~ 109 A/lcm?

conducting filament
in insulating carbon

(©) bottom contact (d) bottom contact -




Conclusions

New carbon memory proposed based on
sp? to sp3 conversion

Inherently fast: reset ~ ns, set ~ ns

Nanotubes need ~30 uA @ 8V

Graphene-like Conductive Carbon
needs pores <6 nm

nsulating Carbon shows lowest switching
oower. S5UpUA @ 1.5V (P=7.5uW)

Pulses and cell design needs to be optimized

Should also work with Fullerens, Graphene and
Diamonds
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