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Introduction and Motivation 
• Resistive Memories like 

– Phase Change (GexSbyTez,....  ) 
– Nano-Ionic, (CBRAM-like, e.g. Ag2S, Ag-GeSe, Cu2S....) 
– Transition-Metal-Oxide ( NiO, TiO2,.....) 
are very promising memory technologies 

 

• but are binary, ternary or even more complex  
materials: 
– what about scalability 
– how do they respond to volume/surface ratio 
– what about variability, if scaled 

 

• Are there other, simpler materials available? 
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Introduction and Motivation 
• The available current in a memory cell 

is given by the select device (FET, diode) 
 
An upper limit may be estimated by: 
 

    j= e*Nd*vsat= e*1019
*107 = 16 MA/cm2 

 
 

 
• Typical currents in phase change  

memories are ~10 MA/cm2 
Are there options or materials  

                       which  enable switching 
                                   at low currents (some µA)? 
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Introduction: Carbon Memory 
sp3 sp2 

I2 > I1 

high conductance low conductance 

I1 

 sp2 to sp3 conversion of disordered graphitic carbon  
                                           (phase change of carbon) 
 
 inherently scalable to atomic scale  
                                       (no phases of different materials) 
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Basic Switching in Carbon 
I1  

TEM image by courtesy of  
J. Huang et al., Nano 
Letters 2006 Vol. 6,  
No. 8 pp. 1699-1705 

• Current changes structure and resistance 
• Resistance changes by a factor of ~ 100 
• High ➔ Low well known from e-fuses 
• New: switch to disorder by short pulse 

I 
+ 
- 
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Short Laser Pulses on Graphite  

Bonelli et al., Laser-irradiation-induced 
structural changes on graphite, Phys. Rev. 
B 59, 13513 (1999) 

• Short laser pulse induces disorder (D-band)  
• D-band overlaps with sp3-peak at 1332 cm-1 
• Diamond cubic phase observed by 

e-beam diffraction  
 Disordered, quenched state by short energy pulse 
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3 ps Laser Pulse on Graphite  

source: Anming Hu, PhD Thesis, U Waterloo, 2008 

sp3 
sp 

632 nm  325 nm  

sp3 

• The shorter the laser pulse the more disorder 
    Disordered, quenched state by short energy pulse 
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Short Energy Pulses 

• Fluence of the laser pulse at  
graphite ablation threshold =~ 285 mJ/cm2    
 

    Energy density (energy/volume) =  95 KJ/cm3 
 
• Energy density for a wire subjected to a current: 

 
   E/V = j2ρt = 1GA/cm2 ·1mΩcm · 20 ns = 2 MJ/cm3 

 
Disordered, quenched state by short current pulse 

K. Sokolowski-Tinten et al., CLEO 2000 
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Short Current Pulse 

temperature distribution in carbon filament after 
1 ns current pulse with 1.7 GA/cm2 : 
Tpeak ~ 3900 K; rapid cool down (0.05 ns)  

carbon 
cell 
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Carbon Nanotubes 

• Nanotubes have a length dependent switching current    
• 25 nm long tubes need  ~ 100µA @ 1.5 V  

                            and have no phonon-limited transport 
• tubes > 200 nm need  ~ 30 µA @ 4V (phonon-limited) 
 Select device needs to handle ~ 30 µA and 4-8 Volt 
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Carbon Nanotubes 
In vacuum ~ 12 µA current possible 

Jin et al., nature 18 nanotechnology | VOL 3 | JANUARY 2008 | 

on-state off-state 
12 uA 

switch on 
6 uA, 1.6V 

on-state 
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Allotropes of Carbon (investigated) 

• Carbon Nanotubes 
- sp2-type 
- difficult to integrate  
- high conductivity 

• Graphene or 
Conductive Carbon 
- sp2-type 
- easy to integrate 

    - high conductivity 

• Insulating carbon 
    - sp3-type, diamond-like 

- easy to integrate  
- high resistivity 

graphene 
layers 

SiO2 

nanotube 

source: J. Robertson 
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Conductive Carbon (CC) 

• Conductive Carbon is 
– graphene-like 
– easily deposited (CVD)  
– can be used as interconnect 

material (highly conductive) 
– easy to pattern  

SiO2 

conductive 
carbon 
in via 

R. Seidel. et al., Chemical Vapor Deposition Growth of 
Single-Walled Carbon Nanotubes at 600 °C and a 
Simple Growth Model J. Phys. Chem. B, (2004) 
 
G. Aichmayr et al., Carbon-high-k Trench Capacitor for 
the 40nm DRAM Generation, VLSI Technology, (2007) 
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Conductive Carbon: Memory Cell 

• Carbon memory cells 
with varying diameter 

30 nm 
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Conductive Carbon: Critical Current 

• Critical current density of 350 MA/cm2 observed 
• Appropriate cell diameter ~ 6 nm for I < 100 µA 
 Use spacer, cladding or self-assembled nano-pores 
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Conductive Carbon (CC): Switching 

• Shmoo-plot of 40 nm diameter CC memory cell 
 smaller diameter, current compliance and optimized 

pulses required 
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Insulating Carbon (IC): Memory Cell 

• Insulating diamond-like carbon film 
• First switching occurs now from high to low state 
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Insulating Carbon (IC): Critical Field 

• Quasi-static switching curves determine critical field 
• Switching power is about 50µW with leakage currents. 
• Very low power levels: 5 µA @ 1.5 V (P= 7.5 µW) 

 

350 nm wide 

150 nm wide 
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Ins. Carbon: Read Endurance & Speed 

• Read endurance at 75 degree C: 
                 2.3*1013 read cycles at 0.1 V. 

• Switching speed is faster than 11 ns. 
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Insulating Carbon: Switching 

• I(V) curves show similar behavior after pulses 
• Resistance level can be trimmed by individual 

voltage pulses (multi-level capability) 
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Insulating Carbon: Filament size 

crater with  
~10 nm diameter 

10 V pulse evaporates metal ➔ filament ~ 10 nm @ 10 V 
➔ use carbon as current spreader   
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Conclusions 
• New carbon memory proposed based on  

                                     sp2 to sp3 conversion 
• Inherently fast: reset ~ ns, set ~ ns 
• Nanotubes need ~30 µA @ 8V 
• Graphene-like Conductive Carbon  

                         needs pores < 6 nm 
• Insulating Carbon shows lowest switching 

power:     5 µA @ 1.5 V (P= 7.5 µW)   
• Pulses and cell design needs to be optimized 
• Should also work with Fullerens, Graphene and 

                                       Diamonds                        
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