

Design, Automation & Test in Europe 24-28 March, 2014 - Dresden, Germany

The European Event for Electronic System Design & Test

Advancing CMOS with Carbon Electronics

Prof. Dr. Franz Kreupl Department of Hybrid Electronic Systems Technische Universität München (TUM) Munich, Germany franz.kreupl@tum.de

Outline

- □ Introduction: The Quest for a New Logic Switch
- Graphene Nanoribbons or Carbon Nanotubes?
- Consequences of missing current saturation in FETs
- **Disadvantages of Graphene Nanoribbons FETs**
- Advantages of Carbon Nanotube Transistors
- **Carbon Nanotubes as Tunneling FETS (TFET)**
- The Big Challenge: How to make them

The Quest for a New Logic Switch

Key drivers mobile application
– enhanced drive current materials /contacts
– lower power low voltage /leakage
– better electrostatics gate-all-around
– variability no doping

Graphene Nanoribbons or Carbon Nanotubes ?

Leading candidates for high mobility materials
Graphene (ribbons) or single-walled carbon nanotubes

Graphene nanoribbon do have band gap

27-Mar-14

Franz Kreupl / HES TUM

Graphene (GNR) versus Carbon Nanotubes

data taken from: Y. Ouyang, Y. Yoon, J. K. Fodor, J. Guo," Comparison of performance limits for carbon nanoribbon and carbon nanotube transistors", Appl. Phys. Lett. 89, 203107 (2006).

□ almost no difference between GNR and CNTs in simulation

both show excellent FET behavior at low voltages with current saturation

GNR with bandgap should solve the problem that CNT have!

Graphene (GNR) vs. Carbon Nanotubes

□ real GNR exhibit a linear dependence of I_D on V_{DS}

current saturation is only observed at long gate length high V_{DS} and high current density

X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, "Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors", Phys. Rev. Lett. 100, 206803 (2008).

Transistors with current saturation

- ☐ absolute gain >> 1 at V_{DD}/2
- ❑ sharp transitions for cascaded logic
- **useful** for SRAM, sense amp etc..

Transistors without current saturation

no sharp transitions for cascaded logic

not useful for logic, SRAM or latch-type sense amp etc..

27-Mar-14

Franz Kreupl / HES TUM F. Kreupl, Nature 484, 321–322 (2012)

Graphene transistors: bad devices

even graphene nanoribbon transistors (which do have a band gap)

failed to show:

current saturation @ low voltage and @ short gate length

Therefore: no voltage gain = bad RF-FET low gain inverters = bad logic-FET

nice overview article for RF devices:

Frank Schwierz:

Graphene Transistors: Status, Prospects, and Problems

Proceedings of the IEEE Vol. 101, No. 7, July 2013

.... same for MoS₂ transistors (& other 2D)

no current saturation @ low voltage and @ short gate length

High-performance MoS₂ transistors with low-resistance molybdenum contacts, Kang, Liu, and Banerjee Appl. Phys. Lett. 104, 093106 (2014)

Evaluating the scalability of multilayer MoS₂ transistors S. Das, J. Appenzeller Device Research Conference (DRC) 2013

Sub-10 nm carbon nanotube transistor

 A. D. Franklin, M. Luisier, S.J. Han, G. Tulevski, C.M. Breslin, L. Gignac, M.S. Lundstrom, W. Haensch, "Sub-10 nm Carbon Nanotube Transistor", Nano Lett., 12 (2), 758–762 (2012). 27-Mar-14
F. Kreupl, Nature 484, 321–322 (2012)
F. Kreupl, Nature 484, 321–322 (2012)

Advantages of Carbon Nanotubes FETs

Carbon Nanotubes fullfill our wishlist for a new switch

- Gate-all-around structure work: Franklin et al. , IEDM 2012 patent: Kreupl & Seidel US 7646045 B2 No/low DIBL, very high on-current
- Doping-free for reduced variability
- Metallic, scalable source/drain contacts
 - □~6 kOhm for a 1 nm wide channel! Franklin et al, Nature Nanotech. 2010
- **Compatibility** with high-k materials
 - LaOx, HfOx, ZrOx, TaOx, AlOx, TiOx all work
- **Scalability** demonstrated down to 9 nm Franklin et al. , Nano Letters 2012
 - **Short L_G data is not available for InGaAs, Ge, GeSn, SiGe....**
 - **dark space** might worsen situation for InGaAs, Ge, GeSn

http://www.hes.ei.tum.de/fileadmin/w00bjl/www/uploads/Kreupl_New_materials_on_horizon_for_advanced_logic.pdf

Dark space in silicon / high-µ channels

in Silicon Kelin J. Kuhn, TED 2012

- **Dark space gets worse due to reduced DOS C_{inv} \alpha 1/DOS**
- □ No matter how high the k-value → dark space destroys it

Severe limiter for channel control SS / DIBL deterioration

Skotnicki & Boeuf, VLSI 2010

Franz Kreupl / HES TUM

Ge-, InAs-Scaling – dark space

25 nm Germanium Quantum Well pMOS FinFETs

Fig. 12. DIBL versus L_G for sGe/SiGe Fin devices. Electrostatics are not significantly degraded with L_G scaling down to ~65nm due to the additional isolation from the quantum barrier between sGe and SiGe SRB

L. Witters et al. IMEC, IEDM 2013

No data on SS @ short L_G Why?

20 nm InAs-on-insulator Tri-gate

Fig. 14 *W* dependence of transfer characteristics at $L_{ch} = 20$ nm.

Fig. 15 Transfer characteristics of InAs-OI MOSFETs with $L_{ch}/W = 15/40$ nm at 150 K.

SangHyeon Kim et al., Tokyo U, IEDM 2013

some data only at 150 K Why?

Severe limiter for channel control -> SS / DIBL deterioration Skotnicki & Boeuf, VLSI 2010

Franz Kreupl / HES TUM

Carbon Nanotubes have no dark space

- Current is confined to a single atomic layer
- Intimate channel control & low DOS
- Operation in the quantum capacitance limit (QCL) possible
- In QCL, the potential in channel is determined by the gate potential
- short channel effects are suppressed
- □ Nanotube have no dopants

c.f. Knoch et al. EDL, 2008

Carbon nanotubes outperform alternatives

enhanced current drive due to material and contacts

F. Kreupl, Nature 484, 321–322 (2012)

CNT loff: 1000nA/µm for 9nm ! 100nA/µm for >= 18nm

Carbon Nanotubes Tunneling FETs (TFET)

27-Mar-14

gate voltage V_{Gs}F[Ah] Kreupl / HES TUM

- **gated PIN diode** based on a CNTFET
- **n**-doping by PEI polymer
- p-doped by contacts & atmosphere
- SS of 83 mV/dec and current drive of ~ 1mA/μm
- unknown doping profile
- E field sharper by local screening gates?

F. Kreupl, "Carbon Nanotubes in Microelectronic Applications", in Advanced Micro & Nanosystems Vol. 8. Carbon Nanotube Devices, edited by Christofer Hierold, WILEY-VCH (2008)

Great News – how to proceed?

Please give instructions

- ➔ how to place billions of nanotubes with
 - one type of chirality
 - equal length
 - on a substrate

- well aligned at some nanometer pitch
- with a throughput of 120 wafers per hour

Solution: Just issue a purchase order for the new Applied Materials *Nano-Wonder*[™] machine

No - unfortunately – I am kidding

Placement strategies are to be investigated

Grow in place or transferUse self-assembly

aligned growth is possible, pitch not (yet) suitable

(Selective Growth of Well-Aligned Semiconducting Single-Walled Carbon Nanotubes
Lei Ding, Alexander Tselev, Jinyong Wang, Dongning Yuan, Haibin Chu, Thomas P. McNicholas, Yan Li, and Jie Liu
27-Mar-14 Nano Lett., 2009 DOI: 10.1021/nl803496s) Franz Kreupl / HES TUM

Summery and Conclusion

- There is no single experimental evidence that Graphene and other 2D materials are suitable for further scaling of FETs
- □ The main culprit is missing current saturation
- Opportunity window for alternative channel materials is closing due to dark space effects
- Performance-wise carbon nanotube devices outperform any alternative
- **Huge gap for industrial integration exists**
- A possible roadmap exists based on self-assembly and/or grow in place
- What remains is hard work to make it happen not ideally suited for academia